Template:MOSes by EDO: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
<includeonly>{{#invoke: | <includeonly>{{#invoke: MOSes_by_EDO | mos_in_edo_allperiods_frame | ||
| EDO={{{EDO|}}} | | EDO={{{EDO|}}} | ||
| Number of Periods={{{Number of Periods|}}} | | Number of Periods={{{Number of Periods|}}} |
Revision as of 04:09, 22 September 2024
Copied from Ganaram Inukshuk's template on 22 Oct 2024, the only change was changing an altered module.
Test usage (not working yet, trying to troubleshoot as you’re reading this):
12edo
These are all moment of symmetry scales in 12edo.
Single-period MOS scales
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├──────┼────┤ | 1L 1s | 7, 5 | 7:5 |
├─┼────┼────┤ | 2L 1s | 5, 2 | 5:2 |
├─┼─┼──┼─┼──┤ | 2L 3s | 3, 2 | 3:2 |
├─┼─┼─┼┼─┼─┼┤ | 5L 2s (diatonic) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┤ | 12edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├───────┼───┤ | 1L 1s | 8, 4 | 2:1 |
├───┼───┼───┤ | 3edo | 4, 4 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├────────┼──┤ | 1L 1s | 9, 3 | 3:1 |
├─────┼──┼──┤ | 1L 2s | 6, 3 | 2:1 |
├──┼──┼──┼──┤ | 4edo | 3, 3 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├─────────┼─┤ | 1L 1s | 10, 2 | 5:1 |
├───────┼─┼─┤ | 1L 2s | 8, 2 | 4:1 |
├─────┼─┼─┼─┤ | 1L 3s | 6, 2 | 3:1 |
├───┼─┼─┼─┼─┤ | 1L 4s | 4, 2 | 2:1 |
├─┼─┼─┼─┼─┼─┤ | 6edo | 2, 2 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├──────────┼┤ | 1L 1s | 11, 1 | 11:1 |
├─────────┼┼┤ | 1L 2s | 10, 1 | 10:1 |
├────────┼┼┼┤ | 1L 3s | 9, 1 | 9:1 |
├───────┼┼┼┼┤ | 1L 4s | 8, 1 | 8:1 |
├──────┼┼┼┼┼┤ | 1L 5s (antimachinoid) | 7, 1 | 7:1 |
├─────┼┼┼┼┼┼┤ | 1L 6s (onyx) | 6, 1 | 6:1 |
├────┼┼┼┼┼┼┼┤ | 1L 7s (antipine) | 5, 1 | 5:1 |
├───┼┼┼┼┼┼┼┼┤ | 1L 8s (antisubneutralic) | 4, 1 | 4:1 |
├──┼┼┼┼┼┼┼┼┼┤ | 1L 9s (antisinatonic) | 3, 1 | 3:1 |
├─┼┼┼┼┼┼┼┼┼┼┤ | 1L 10s | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┤ | 12edo | 1, 1 | 1:1 |
Multi-period MOS scales
2 periods
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├───┼─┼───┼─┤ | 2L 2s | 4, 2 | 2:1 |
├─┼─┼─┼─┼─┼─┤ | 6edo | 2, 2 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├────┼┼────┼┤ | 2L 2s | 5, 1 | 5:1 |
├───┼┼┼───┼┼┤ | 2L 4s (malic) | 4, 1 | 4:1 |
├──┼┼┼┼──┼┼┼┤ | 2L 6s (subaric) | 3, 1 | 3:1 |
├─┼┼┼┼┼─┼┼┼┼┤ | 2L 8s (jaric) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┤ | 12edo | 1, 1 | 1:1 |
3 periods
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├──┼┼──┼┼──┼┤ | 3L 3s (triwood) | 3, 1 | 3:1 |
├─┼┼┼─┼┼┼─┼┼┤ | 3L 6s (tcherepnin) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┤ | 12edo | 1, 1 | 1:1 |
4 periods
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├─┼┼─┼┼─┼┼─┼┤ | 4L 4s (tetrawood) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┤ | 12edo | 1, 1 | 1:1 |
13edo
These are all moment of symmetry scales in 13edo.
Single-period MOS scales
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├──────┼─────┤ | 1L 1s | 7, 6 | 7:6 |
├┼─────┼─────┤ | 2L 1s | 6, 1 | 6:1 |
├┼┼────┼┼────┤ | 2L 3s | 5, 1 | 5:1 |
├┼┼┼───┼┼┼───┤ | 2L 5s (antidiatonic) | 4, 1 | 4:1 |
├┼┼┼┼──┼┼┼┼──┤ | 2L 7s (balzano) | 3, 1 | 3:1 |
├┼┼┼┼┼─┼┼┼┼┼─┤ | 2L 9s | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┼┤ | 13edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├───────┼────┤ | 1L 1s | 8, 5 | 8:5 |
├──┼────┼────┤ | 2L 1s | 5, 3 | 5:3 |
├──┼──┼─┼──┼─┤ | 3L 2s | 3, 2 | 3:2 |
├┼─┼┼─┼─┼┼─┼─┤ | 5L 3s (oneirotonic) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┼┤ | 13edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├────────┼───┤ | 1L 1s | 9, 4 | 9:4 |
├────┼───┼───┤ | 1L 2s | 5, 4 | 5:4 |
├┼───┼───┼───┤ | 3L 1s | 4, 1 | 4:1 |
├┼┼──┼┼──┼┼──┤ | 3L 4s (mosh) | 3, 1 | 3:1 |
├┼┼┼─┼┼┼─┼┼┼─┤ | 3L 7s (sephiroid) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┼┤ | 13edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├─────────┼──┤ | 1L 1s | 10, 3 | 10:3 |
├──────┼──┼──┤ | 1L 2s | 7, 3 | 7:3 |
├───┼──┼──┼──┤ | 1L 3s | 4, 3 | 4:3 |
├┼──┼──┼──┼──┤ | 4L 1s | 3, 1 | 3:1 |
├┼┼─┼┼─┼┼─┼┼─┤ | 4L 5s (gramitonic) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┼┤ | 13edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├──────────┼─┤ | 1L 1s | 11, 2 | 11:2 |
├────────┼─┼─┤ | 1L 2s | 9, 2 | 9:2 |
├──────┼─┼─┼─┤ | 1L 3s | 7, 2 | 7:2 |
├────┼─┼─┼─┼─┤ | 1L 4s | 5, 2 | 5:2 |
├──┼─┼─┼─┼─┼─┤ | 1L 5s (antimachinoid) | 3, 2 | 3:2 |
├┼─┼─┼─┼─┼─┼─┤ | 6L 1s (archaeotonic) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┼┤ | 13edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├───────────┼┤ | 1L 1s | 12, 1 | 12:1 |
├──────────┼┼┤ | 1L 2s | 11, 1 | 11:1 |
├─────────┼┼┼┤ | 1L 3s | 10, 1 | 10:1 |
├────────┼┼┼┼┤ | 1L 4s | 9, 1 | 9:1 |
├───────┼┼┼┼┼┤ | 1L 5s (antimachinoid) | 8, 1 | 8:1 |
├──────┼┼┼┼┼┼┤ | 1L 6s (onyx) | 7, 1 | 7:1 |
├─────┼┼┼┼┼┼┼┤ | 1L 7s (antipine) | 6, 1 | 6:1 |
├────┼┼┼┼┼┼┼┼┤ | 1L 8s (antisubneutralic) | 5, 1 | 5:1 |
├───┼┼┼┼┼┼┼┼┼┤ | 1L 9s (antisinatonic) | 4, 1 | 4:1 |
├──┼┼┼┼┼┼┼┼┼┼┤ | 1L 10s | 3, 1 | 3:1 |
├─┼┼┼┼┼┼┼┼┼┼┼┤ | 1L 11s | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┼┤ | 13edo | 1, 1 | 1:1 |