176edo: Difference between revisions
m Replace deprecated template |
Cleanup and +subsets and supersets |
||
Line 3: | Line 3: | ||
== Theory == | == Theory == | ||
176edo is [[consistent]] to the [[11-odd-limit]] | 176edo is [[consistent]] to the [[11-odd-limit]]. The equal temperament [[tempering out|tempers out]] 78732/78125 ([[sensipent comma]]) and {{monzo| 41 -20 -4 }} ([[undim comma]]) in the 5-limit; [[6144/6125]], [[10976/10935]], and [[50421/50000]] in the 7-limit; [[441/440]], [[3388/3375]], 6912/6875, [[8019/8000]], [[9801/9800]] and [[16384/16335]] in the 11-limit. Using the [[patent val]], [[351/350]], [[364/363]], [[2080/2079]], [[2197/2187]], and [[4096/4095]] in the 13-limit. | ||
It [[support]]s the [[bison]] temperament and the [[commatic]] temperament, and provides the [[optimal patent val]] for [[countermiracle]] in the 7- and 11-limit, and countermanna, one of the extensions, in the 13-limit. | It [[support]]s the [[bison]] temperament and the [[commatic]] temperament, and provides the [[optimal patent val]] for [[countermiracle]] in the 7- and 11-limit, and countermanna, one of the extensions, in the 13-limit. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|176}} | {{Harmonics in equal|176}} | ||
=== Subsets and supersets === | |||
Since 176 factors into {{factorization|176}}, 176edo has subset edos {{EDOs| 2, 4, 8, 11, 22, 44, and 88 }}. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning Error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 23: | Line 26: | ||
| 2.3 | | 2.3 | ||
| {{monzo| 279 -176 }} | | {{monzo| 279 -176 }} | ||
| | | {{mapping| 176 279 }} | ||
| -0.100 | | -0.100 | ||
| 0.100 | | 0.100 | ||
Line 30: | Line 33: | ||
| 2.3.5 | | 2.3.5 | ||
| 78732/78125, {{monzo| 41 -20 -4 }} | | 78732/78125, {{monzo| 41 -20 -4 }} | ||
| | | {{mapping| 176 279 409 }} | ||
| -0.400 | | -0.400 | ||
| 0.432 | | 0.432 | ||
Line 37: | Line 40: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 6144/6125, 10976/10935, 50421/50000 | | 6144/6125, 10976/10935, 50421/50000 | ||
| | | {{mapping| 176 279 409 494 }} | ||
| -0.243 | | -0.243 | ||
| 0.463 | | 0.463 | ||
Line 44: | Line 47: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 441/440, 3388/3375, 6144/6125, 8019/8000 | | 441/440, 3388/3375, 6144/6125, 8019/8000 | ||
| | | {{mapping| 176 279 409 494 609 }} | ||
| -0.250 | | -0.250 | ||
| 0.414 | | 0.414 | ||
Line 51: | Line 54: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 351/350, 364/363, 441/440, 2197/2187, 3146/3125 | | 351/350, 364/363, 441/440, 2197/2187, 3146/3125 | ||
| | | {{mapping| 176 279 409 494 609 651 }} | ||
| -0.123 | | -0.123 | ||
| 0.473 | | 0.473 | ||
Line 61: | Line 64: | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br> | ! Associated<br>Ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 138: | Line 141: | ||
| [[Icosidillic]] / [[major arcana]] | | [[Icosidillic]] / [[major arcana]] | ||
|} | |} | ||
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct | |||
[[Category:Countermiracle]] | [[Category:Countermiracle]] |
Revision as of 09:51, 25 April 2024
← 175edo | 176edo | 177edo → |
The 176 equal divisions of the octave (176edo), or the 176(-tone) equal temperament (176tet, 176et) when viewed from a regular temperament perspective, is the equal division of the octave into 176 parts of about 6.82 cents each, a size close to 243/242, the rastma.
Theory
176edo is consistent to the 11-odd-limit. The equal temperament tempers out 78732/78125 (sensipent comma) and [41 -20 -4⟩ (undim comma) in the 5-limit; 6144/6125, 10976/10935, and 50421/50000 in the 7-limit; 441/440, 3388/3375, 6912/6875, 8019/8000, 9801/9800 and 16384/16335 in the 11-limit. Using the patent val, 351/350, 364/363, 2080/2079, 2197/2187, and 4096/4095 in the 13-limit.
It supports the bison temperament and the commatic temperament, and provides the optimal patent val for countermiracle in the 7- and 11-limit, and countermanna, one of the extensions, in the 13-limit.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.32 | +2.32 | -0.64 | +0.95 | -1.89 | -2.68 | +2.49 | -1.00 | -0.03 | +0.42 |
Relative (%) | +0.0 | +4.7 | +34.1 | -9.4 | +14.0 | -27.7 | -39.3 | +36.5 | -14.7 | -0.5 | +6.1 | |
Steps (reduced) |
176 (0) |
279 (103) |
409 (57) |
494 (142) |
609 (81) |
651 (123) |
719 (15) |
748 (44) |
796 (92) |
855 (151) |
872 (168) |
Subsets and supersets
Since 176 factors into 24 × 11, 176edo has subset edos 2, 4, 8, 11, 22, 44, and 88.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [279 -176⟩ | [⟨176 279]] | -0.100 | 0.100 | 1.47 |
2.3.5 | 78732/78125, [41 -20 -4⟩ | [⟨176 279 409]] | -0.400 | 0.432 | 6.34 |
2.3.5.7 | 6144/6125, 10976/10935, 50421/50000 | [⟨176 279 409 494]] | -0.243 | 0.463 | 6.79 |
2.3.5.7.11 | 441/440, 3388/3375, 6144/6125, 8019/8000 | [⟨176 279 409 494 609]] | -0.250 | 0.414 | 6.08 |
2.3.5.7.11.13 | 351/350, 364/363, 441/440, 2197/2187, 3146/3125 | [⟨176 279 409 494 609 651]] | -0.123 | 0.473 | 6.93 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 17\176 | 115.91 | 77/72 | Mercy / countermiracle / counterbenediction / countermanna |
1 | 35\176 | 238.64 | 147/128 | Tokko |
1 | 65\176 | 443.18 | 162/125 | Sensipent |
1 | 73\176 | 497.73 | 4/3 | Gary / cotoneum |
1 | 83\176 | 565.91 | 13/9 | Tricot / trident |
2 | 23\176 | 20.45 | 81/80 | Commatic |
2 | 23\176 | 156.82 | 35/32 | Bison |
4 | 73\176 (15\176) |
497.73 (102.27) |
4/3 (35/33) |
Undim |
8 | 73\176 (7\176) |
497.73 (47.73) |
4/3 (36/35) |
Twilight |
8 | 83\176 (5\176) |
565.91 (34.09) |
168/121 (55/54) |
Octowerck (176f) / octowerckis (176) |
11 | 73\176 (7\176) |
497.73 (47.73) |
4/3 (36/35) |
Hendecatonic |
22 | 73\176 (1\176) |
497.73 (6.82) |
4/3 (385/384) |
Icosidillic / major arcana |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct