289edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Address a name change
Cleanup
Line 3: Line 3:


== Theory ==
== Theory ==
289edo has decent 11- and 13-limit interpretations despite not being [[consistent]]. It tempers out the [[schisma]], 32805/32768 in the 5-limit; [[4375/4374]] and 65625/65536 in the 7-limit; [[441/440]] and [[4000/3993]] in the 11-limit; and [[364/363]], [[676/675]], [[1001/1000]], [[1575/1573]] and [[2080/2079]] in the 13-limit.
289edo has decent 11- and 13-limit interpretations despite not being [[consistent]]. The equal temperament [[tempering out|tempers out]] the [[schisma]], 32805/32768 in the 5-limit; [[4375/4374]] and [[65625/65536]] in the 7-limit; [[441/440]] and [[4000/3993]] in the 11-limit; and [[364/363]], [[676/675]], [[1001/1000]], [[1575/1573]] and [[2080/2079]] in the 13-limit.


It is the [[optimal patent val]] for the [[13-limit]] rank-5 temperament tempering out 364/363, and the 13-limit [[History (temperament)|history]] temperament, which tempers out 364/363, 441/440 and 676/675. It provides a good tuning for the 11-limit version also. It is also the optimal patent val for [[sextilififths]] in both the 11- and 13-limit, and for [[quintaschis]] in both the 11- and 13-limit.  
It is the [[optimal patent val]] for the [[13-limit]] rank-5 temperament tempering out 364/363, and the 13-limit [[History (temperament)|history]] temperament, which tempers out 364/363, 441/440 and 676/675. It provides a good tuning for the 11-limit version also. It is also the optimal patent val for [[sextilififths]] in both the 11- and 13-limit, and for [[quintaschis]] in both the 11- and 13-limit.  
Line 10: Line 10:
{{Harmonics in equal|289}}
{{Harmonics in equal|289}}


=== Divisors ===
=== Subsets and supersets ===
289 is 17 squared. In light of containing [[17edo]] as a subset, 289edo [[support]]s the [[chlorine]] temperament, which tempers out the [[septendecima]] {{monzo|-52 -17 34}} and the ragisma 4375/4374.
289 is 17 squared. In light of containing [[17edo]] as a subset, 289edo [[support]]s the [[chlorine]] temperament, which tempers out the [[septendecima]] {{monzo| -52 -17 34 }} and the ragisma 4375/4374.


== Regular temperament properties ==
== Regular temperament properties ==
Line 26: Line 26:
| 2.3
| 2.3
| {{monzo| -458 289 }}
| {{monzo| -458 289 }}
| [{{val| 289 458 }}]
| {{mapping| 289 458 }}
| +0.0709
| +0.0709
| 0.0710
| 0.0710
Line 33: Line 33:
| 2.3.5
| 2.3.5
| 32805/32768, {{monzo| 7 41 -31 }}
| 32805/32768, {{monzo| 7 41 -31 }}
| [{{val| 289 458 671 }}]
| {{mapping| 289 458 671 }}
| +0.0695
| +0.0695
| 0.0580
| 0.0580
Line 40: Line 40:
| 2.3.5.7
| 2.3.5.7
| 4375/4374, 32805/32768, 235298/234375
| 4375/4374, 32805/32768, 235298/234375
| [{{val| 289 458 671 811 }}]
| {{mapping| 289 458 671 811 }}
| +0.1725
| +0.1725
| 0.1854
| 0.1854
Line 47: Line 47:
| 2.3.5.7.11
| 2.3.5.7.11
| 441/440, 4000/3993, 4375/4374, 32805/32768
| 441/440, 4000/3993, 4375/4374, 32805/32768
| [{{val| 289 458 671 811 1000 }}]
| {{mapping| 289 458 671 811 1000 }}
| +0.0841
| +0.0841
| 0.2423
| 0.2423
Line 54: Line 54:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 364/363, 441/440, 676/675, 4375/4374, 19773/19712
| 364/363, 441/440, 676/675, 4375/4374, 19773/19712
| [{{val| 289 458 671 811 1000 1069 }}]
| {{mapping| 289 458 671 811 1000 1069 }}
| +0.1500
| +0.1500
| 0.2657
| 0.2657
Line 63: Line 63:
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
! Periods<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Generator*
! Cents<br>(Reduced)
! Cents*
! Associated<br>Ratio
! Associated<br>Ratio*
! Temperaments
! Temperaments
|-
|-
Line 128: Line 128:
| [[Chlorine]]
| [[Chlorine]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct


[[Category:Minor minthmic]]
[[Category:Minor minthmic]]

Revision as of 09:22, 4 March 2024

← 288edo 289edo 290edo →
Prime factorization 172
Step size 4.15225 ¢ 
Fifth 169\289 (701.73 ¢)
Semitones (A1:m2) 27:22 (112.1 ¢ : 91.35 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

289edo has decent 11- and 13-limit interpretations despite not being consistent. The equal temperament tempers out the schisma, 32805/32768 in the 5-limit; 4375/4374 and 65625/65536 in the 7-limit; 441/440 and 4000/3993 in the 11-limit; and 364/363, 676/675, 1001/1000, 1575/1573 and 2080/2079 in the 13-limit.

It is the optimal patent val for the 13-limit rank-5 temperament tempering out 364/363, and the 13-limit history temperament, which tempers out 364/363, 441/440 and 676/675. It provides a good tuning for the 11-limit version also. It is also the optimal patent val for sextilififths in both the 11- and 13-limit, and for quintaschis in both the 11- and 13-limit.

Prime harmonics

Approximation of prime harmonics in 289edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.22 -0.15 -1.35 +0.93 -1.77 -1.15 +1.45 -1.28 +0.18 +0.99
Relative (%) +0.0 -5.4 -3.7 -32.6 +22.4 -42.7 -27.7 +34.9 -30.9 +4.3 +23.7
Steps
(reduced)
289
(0)
458
(169)
671
(93)
811
(233)
1000
(133)
1069
(202)
1181
(25)
1228
(72)
1307
(151)
1404
(248)
1432
(276)

Subsets and supersets

289 is 17 squared. In light of containing 17edo as a subset, 289edo supports the chlorine temperament, which tempers out the septendecima [-52 -17 34 and the ragisma 4375/4374.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-458 289 [289 458]] +0.0709 0.0710 1.71
2.3.5 32805/32768, [7 41 -31 [289 458 671]] +0.0695 0.0580 1.40
2.3.5.7 4375/4374, 32805/32768, 235298/234375 [289 458 671 811]] +0.1725 0.1854 4.46
2.3.5.7.11 441/440, 4000/3993, 4375/4374, 32805/32768 [289 458 671 811 1000]] +0.0841 0.2423 5.83
2.3.5.7.11.13 364/363, 441/440, 676/675, 4375/4374, 19773/19712 [289 458 671 811 1000 1069]] +0.1500 0.2657 6.40

Rank-2 temperaments

Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 4\289 16.61 100/99 Quincy
1 13\289 53.98 33/32 Tridecafifths
1 20\289 83.04 21/20 Sextilififths
1 24\289 99.65 18/17 Quintaschis
1 76\289 315.57 6/5 Acrokleismic
1 86\289 357.09 768/625 Dodifo
1 108\289 448.44 35/27 Semidimfourth
1 120\289 498.27 4/3 Pontiac
1 135\289 560.55 864/625 Whoosh
17 93\289
(8\289)
386.16
(33.22)
[-23 5 9 -2
(100352/98415)
Chlorine

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct