113edo: Difference between revisions
Jump to navigation
Jump to search
Adopt template: EDO intro; cleanup; -redundant categories |
|||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|113}} | |||
== Theory == | == Theory == | ||
113edo is distinctly [[consistent]] in the [[13-odd-limit]] with a flat tendency. As a temperament, it [[tempers out]] the [[amity comma]] and the [[ampersand]] in the [[5-limit]]; [[225/224]], [[1029/1024]] and 1071875/1062882 in the [[7-limit]]; [[243/242]], [[385/384]], [[441/440]] and [[540/539]] in the [[11-limit]]; [[325/324]], [[364/363]], [[729/728]], and 1625/1617 in the [[13-limit]]. It notably [[support]]s the 5-limit [[amity]] temperament, 7-limit [[amicable]] temperament, 7- and 11-limit [[miracle]] temperament, and 13-limit [[manna]] temperament. | 113edo is distinctly [[consistent]] in the [[13-odd-limit]] with a flat tendency. As a temperament, it [[tempers out]] the [[amity comma]] and the [[ampersand]] in the [[5-limit]]; [[225/224]], [[1029/1024]] and 1071875/1062882 in the [[7-limit]]; [[243/242]], [[385/384]], [[441/440]] and [[540/539]] in the [[11-limit]]; [[325/324]], [[364/363]], [[729/728]], and 1625/1617 in the [[13-limit]]. It notably [[support]]s the 5-limit [[amity]] temperament, 7-limit [[amicable]] temperament, 7- and 11-limit [[miracle]] temperament, and 13-limit [[manna]] temperament. | ||
=== Prime harmonics === | |||
{{Harmonics in equal|113}} | |||
=== | === Subsets and supersets === | ||
113edo is the 30th [[prime edo]]. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning Error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 60: | Line 61: | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per | ! Periods<br>per 8ve | ||
! Generator<br>( | ! Generator<br>(Reduced) | ||
! Cents<br>( | ! Cents<br>(Reduced) | ||
! Associated<br> | ! Associated<br>Ratio | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
Line 118: | Line 119: | ||
| 339.82 | | 339.82 | ||
| 243/200 | | 243/200 | ||
| [[ | | [[Houborizic]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 144: | Line 145: | ||
| [[Gaster temperament|Gaster]] | | [[Gaster temperament|Gaster]] | ||
|} | |} | ||
Revision as of 14:59, 28 August 2023
← 112edo | 113edo | 114edo → |
Theory
113edo is distinctly consistent in the 13-odd-limit with a flat tendency. As a temperament, it tempers out the amity comma and the ampersand in the 5-limit; 225/224, 1029/1024 and 1071875/1062882 in the 7-limit; 243/242, 385/384, 441/440 and 540/539 in the 11-limit; 325/324, 364/363, 729/728, and 1625/1617 in the 13-limit. It notably supports the 5-limit amity temperament, 7-limit amicable temperament, 7- and 11-limit miracle temperament, and 13-limit manna temperament.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -1.07 | -4.01 | -2.45 | +0.89 | -1.59 | +1.24 | -0.17 | -1.73 | +0.51 | +1.87 |
Relative (%) | +0.0 | -10.1 | -37.8 | -23.1 | +8.4 | -15.0 | +11.7 | -1.6 | -16.3 | +4.8 | +17.6 | |
Steps (reduced) |
113 (0) |
179 (66) |
262 (36) |
317 (91) |
391 (52) |
418 (79) |
462 (10) |
480 (28) |
511 (59) |
549 (97) |
560 (108) |
Subsets and supersets
113edo is the 30th prime edo.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-179 113⟩ | [⟨113 179]] | +0.338 | 0.338 | 3.18 |
2.3.5 | 1600000/1594323, 34171875/33554432 | [⟨113 179 262]] | +0.801 | 0.712 | 6.70 |
2.3.5.7 | 225/224, 1029/1024, 1071875/1062882 | [⟨113 179 262 317]] | +0.820 | 0.617 | 5.81 |
2.3.5.7.11 | 225/224, 243/242, 385/384, 980000/970299 | [⟨113 179 262 317 391]] | +0.604 | 0.700 | 6.59 |
2.3.5.7.11.13 | 225/224, 243/242, 325/324, 385/384, 1875/1859 | [⟨113 179 262 317 391 418]] | +0.575 | 0.643 | 6.05 |
Rank-2 temperaments
Periods per 8ve |
Generator (Reduced) |
Cents (Reduced) |
Associated Ratio |
Temperaments |
---|---|---|---|---|
1 | 4\113 | 42.48 | 40/39 | Humorous |
1 | 6\113 | 63.72 | 28/27 | Sycamore / betic |
1 | 8\113 | 84.96 | 21/20 | Amicable / pseudoamical / pseudoamorous |
1 | 11\113 | 116.81 | 15/14~16/15 | Miracle / manna |
1 | 13\113 | 138.05 | 27/25 | Quartemka |
1 | 22\113 | 233.63 | 8/7 | Slendric |
1 | 27\113 | 286.73 | 13/11 | Gamity |
1 | 29\113 | 307.96 | 3200/2673 | Familia |
1 | 32\113 | 339.82 | 243/200 | Houborizic |
1 | 34\113 | 360.06 | 16/13 | Phicordial |
1 | 37\113 | 392.92 | 2744/2187 | Emmthird |
1 | 47\113 | 499.12 | 4/3 | Gracecordial |
1 | 56\113 | 594.69 | 55/39 | Gaster |