65edo: Difference between revisions
→Intervals: added intervals < 600c in extended subgroup (which was extended), specifically, superparticulars and (semi)convergents within the appropriately prime-subgroup-limited 57-odd-limit; please add anything you think is missing |
|||
Line 28: | Line 28: | ||
| 1 | | 1 | ||
| 18.46 | | 18.46 | ||
| 81/80, 100/99, 121/120 | | 81/80, 100/99, 121/120, 88/87, 93/92, 94/93, 95/94, 96/95, 115/114, 116/115, 125/124 | ||
| ^1 | | ^1 | ||
| ^D | | ^D | ||
Line 34: | Line 34: | ||
| 2 | | 2 | ||
| 36.92 | | 36.92 | ||
| 45/44, 55/54, 128/125 | | 45/44, 46/45, 47/46, 48/47, 55/54, 128/125 | ||
| ^^1 | | ^^1 | ||
| ^^D | | ^^D | ||
Line 40: | Line 40: | ||
| 3 | | 3 | ||
| 55.38 | | 55.38 | ||
| 33/32 | | 33/32, 34/33, 30/29, 31/30, 32/31 | ||
| vvm2 | | vvm2 | ||
| vvEb | | vvEb | ||
Line 46: | Line 46: | ||
| 4 | | 4 | ||
| 73.85 | | 73.85 | ||
| 25/24 | | 25/24, 24/23, 23/22, 47/45 | ||
| vm2 | | vm2 | ||
| vEb | | vEb | ||
Line 52: | Line 52: | ||
| 5 | | 5 | ||
| 92.31 | | 92.31 | ||
| 135/128, 256/243 | | 135/128, 256/243, 18/17, 19/18, 20/19, 58/55 | ||
| m2 | | m2 | ||
| Eb | | Eb | ||
Line 58: | Line 58: | ||
| 6 | | 6 | ||
| 110.77 | | 110.77 | ||
| 16/15 | | 16/15, 17/16, 33/31 | ||
| A1/^m2 | | A1/^m2 | ||
| D#/^Eb | | D#/^Eb | ||
Line 64: | Line 64: | ||
| 7 | | 7 | ||
| 129.23 | | 129.23 | ||
| 14/13 | | 27/25, 14/13, 55/51 | ||
| v~2 | | v~2 | ||
| ^^Eb | | ^^Eb | ||
Line 70: | Line 70: | ||
| 8 | | 8 | ||
| 147.69 | | 147.69 | ||
| 12/11 | | 12/11, 25/23 | ||
| ~2 | | ~2 | ||
| vvvE | | vvvE | ||
Line 76: | Line 76: | ||
| 9 | | 9 | ||
| 166.15 | | 166.15 | ||
| 11/10 | | 11/10, 32/29 | ||
| ^~2 | | ^~2 | ||
| vvE | | vvE | ||
Line 88: | Line 88: | ||
| 11 | | 11 | ||
| 203.08 | | 203.08 | ||
| 9/8 | | 9/8, 19/17, 64/57 | ||
| M2 | | M2 | ||
| E | | E | ||
Line 94: | Line 94: | ||
| 12 | | 12 | ||
| 221.54 | | 221.54 | ||
| 25/22 | | 25/22, 17/15, 33/29, 58/51 | ||
| ^M2 | | ^M2 | ||
| ^E | | ^E | ||
Line 100: | Line 100: | ||
| 13 | | 13 | ||
| 240.00 | | 240.00 | ||
| 55/48 | | 55/48, 23/20, 31/17, 54/47 | ||
| ^^M2 | | ^^M2 | ||
| ^^E | | ^^E | ||
Line 106: | Line 106: | ||
| 14 | | 14 | ||
| 258.46 | | 258.46 | ||
| 64/55 | | 64/55, 22/19, 29/25, 36/31 | ||
| vvm3 | | vvm3 | ||
| vvF | | vvF | ||
Line 112: | Line 112: | ||
| 15 | | 15 | ||
| 276.92 | | 276.92 | ||
| 75/64 | | 75/64, 20/17, 27/23, 34/29 | ||
| vm3 | | vm3 | ||
| vF | | vF | ||
Line 118: | Line 118: | ||
| 16 | | 16 | ||
| 295.38 | | 295.38 | ||
| 32/27 | | 32/27, 19/16 | ||
| m3 | | m3 | ||
| F | | F | ||
Line 124: | Line 124: | ||
| 17 | | 17 | ||
| 313.85 | | 313.85 | ||
| 6/5 | | 6/5, 55/46 | ||
| ^m3 | | ^m3 | ||
| ^F | | ^F | ||
Line 130: | Line 130: | ||
| 18 | | 18 | ||
| 332.31 | | 332.31 | ||
| 40/33 | | 40/33, 17/14, 23/19 | ||
| v~3 | | v~3 | ||
| ^^F | | ^^F | ||
Line 136: | Line 136: | ||
| 19 | | 19 | ||
| 350.77 | | 350.77 | ||
| 11/9, 27/22 | | 11/9, 27/22, 38/31 | ||
| ~3 | | ~3 | ||
| ^^^F | | ^^^F | ||
Line 142: | Line 142: | ||
| 20 | | 20 | ||
| 369.23 | | 369.23 | ||
| 26/21 | | 26/21, 68/55, 47/38 | ||
| ^~3 | | ^~3 | ||
| vvF# | | vvF# | ||
Line 148: | Line 148: | ||
| 21 | | 21 | ||
| 387.69 | | 387.69 | ||
| 5/4 | | 5/4, 64/51 | ||
| vM3 | | vM3 | ||
| vF# | | vF# | ||
Line 154: | Line 154: | ||
| 22 | | 22 | ||
| 406.15 | | 406.15 | ||
| 81/64 | | 81/64, 19/15, 24/19, 34/27, 29/23 | ||
| M3 | | M3 | ||
| F# | | F# | ||
Line 160: | Line 160: | ||
| 23 | | 23 | ||
| 424.62 | | 424.62 | ||
| 32/25 | | 32/25, 23/18 | ||
| ^M3 | | ^M3 | ||
| ^F# | | ^F# | ||
Line 166: | Line 166: | ||
| 24 | | 24 | ||
| 443.08 | | 443.08 | ||
| 128/99 | | 128/99, 22/17, 31/24, 40/31 | ||
| ^^M3 | | ^^M3 | ||
| ^^F# | | ^^F# | ||
Line 172: | Line 172: | ||
| 25 | | 25 | ||
| 461.54 | | 461.54 | ||
| 72/55 | | 72/55, 30/23, 47/36 | ||
| vv4 | | vv4 | ||
| vvG | | vvG | ||
Line 178: | Line 178: | ||
| 26 | | 26 | ||
| 480.00 | | 480.00 | ||
| 33/25 | | 33/25, 29/22, 62/47 | ||
| v4 | | v4 | ||
| vG | | vG | ||
Line 190: | Line 190: | ||
| 28 | | 28 | ||
| 516.92 | | 516.92 | ||
| 27/20 | | 27/20, 23/17, 31/23 | ||
| ^4 | | ^4 | ||
| ^G | | ^G | ||
Line 196: | Line 196: | ||
| 29 | | 29 | ||
| 535.38 | | 535.38 | ||
| 15/11 | | 15/11, 34/25, 64/47 | ||
| v~4 | | v~4 | ||
| ^^G | | ^^G | ||
Line 202: | Line 202: | ||
| 30 | | 30 | ||
| 553.85 | | 553.85 | ||
| 11/8 | | 11/8, 40/29, 62/45 | ||
| ~4 | | ~4 | ||
| ^^^G | | ^^^G | ||
Line 208: | Line 208: | ||
| 31 | | 31 | ||
| 572.31 | | 572.31 | ||
| 25/18 | | 25/18, 32/23 | ||
| ^~4/vd5 | | ^~4/vd5 | ||
| vvG#/vAb | | vvG#/vAb | ||
Line 214: | Line 214: | ||
| 32 | | 32 | ||
| 590.77 | | 590.77 | ||
| 45/32 | | 45/32, 38/27, 31/22, 24/17 | ||
| vA4/d5 | | vA4/d5 | ||
| vG#/Ab | | vG#/Ab | ||
Line 416: | Line 416: | ||
| D | | D | ||
|} | |} | ||
<nowiki>*</nowiki> based on treating 65edo as a 2.3.5.11.13/7 subgroup temperament. | <nowiki>*</nowiki> based on treating 65edo as a 2.3.5.11.13/7.17.19.23.29.31.47 subgroup temperament. | ||
== Regular temperament properties == | == Regular temperament properties == |
Revision as of 23:56, 5 January 2023
← 64edo | 65edo | 66edo → |
The 65 equal divisions of the octave (65edo), or 65(-tone) equal temperament (65tet, 65et) when viewed from a regular temperament perspective, divides the octave into 65 equal parts of about 18.5 cents each.
Theory
65et can be characterized as the temperament which tempers out the schisma, 32805/32768, the sensipent comma, 78732/78125, and the würschmidt comma. In the 7-limit, there are two different maps; the first is ⟨65 103 151 182], tempering out 126/125, 245/243 and 686/675, so that it supports sensi temperament, and the second is ⟨65 103 151 183] (65d), tempering out 225/224, 3125/3087, 4000/3969 and 5120/5103, so that it supports garibaldi temperament. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit würschmidt temperament (wurschmidt and worschmidt) these two mappings provide.
65edo approximates the intervals 3/2, 5/4, 11/8, 19/16, 23/16, 31/16 and 47/32 well, so that it does a good job representing the 2.3.5.11.19.23.31.47 just intonation subgroup. To this one may want to add 17/16, 29/16 and 43/32, giving the 47-limit no-7's no-13's no-37's no-41's subgroup 2.3.5.11.17.19.23.29.31.43.47. In this sense it is a tuning of schismic/Nestoria that focuses on the very primes that 53edo neglects (which instead elegantly connects primes 7, 13, 37 and 41 to nestoria). Also of interest is the 19-limit 2*65 subgroup 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as the zeta edo 130edo.
65edo contains 13edo as a subset. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see Rubble: a Xenuke Unfolded.
Prime harmonics
Script error: No such module "primes_in_edo".
Intervals
Degree | Cents | Approximate Ratios * | Ups and Downs Notation | |
---|---|---|---|---|
0 | 0.00 | 1/1 | P1 | D |
1 | 18.46 | 81/80, 100/99, 121/120, 88/87, 93/92, 94/93, 95/94, 96/95, 115/114, 116/115, 125/124 | ^1 | ^D |
2 | 36.92 | 45/44, 46/45, 47/46, 48/47, 55/54, 128/125 | ^^1 | ^^D |
3 | 55.38 | 33/32, 34/33, 30/29, 31/30, 32/31 | vvm2 | vvEb |
4 | 73.85 | 25/24, 24/23, 23/22, 47/45 | vm2 | vEb |
5 | 92.31 | 135/128, 256/243, 18/17, 19/18, 20/19, 58/55 | m2 | Eb |
6 | 110.77 | 16/15, 17/16, 33/31 | A1/^m2 | D#/^Eb |
7 | 129.23 | 27/25, 14/13, 55/51 | v~2 | ^^Eb |
8 | 147.69 | 12/11, 25/23 | ~2 | vvvE |
9 | 166.15 | 11/10, 32/29 | ^~2 | vvE |
10 | 184.62 | 10/9 | vM2 | vE |
11 | 203.08 | 9/8, 19/17, 64/57 | M2 | E |
12 | 221.54 | 25/22, 17/15, 33/29, 58/51 | ^M2 | ^E |
13 | 240.00 | 55/48, 23/20, 31/17, 54/47 | ^^M2 | ^^E |
14 | 258.46 | 64/55, 22/19, 29/25, 36/31 | vvm3 | vvF |
15 | 276.92 | 75/64, 20/17, 27/23, 34/29 | vm3 | vF |
16 | 295.38 | 32/27, 19/16 | m3 | F |
17 | 313.85 | 6/5, 55/46 | ^m3 | ^F |
18 | 332.31 | 40/33, 17/14, 23/19 | v~3 | ^^F |
19 | 350.77 | 11/9, 27/22, 38/31 | ~3 | ^^^F |
20 | 369.23 | 26/21, 68/55, 47/38 | ^~3 | vvF# |
21 | 387.69 | 5/4, 64/51 | vM3 | vF# |
22 | 406.15 | 81/64, 19/15, 24/19, 34/27, 29/23 | M3 | F# |
23 | 424.62 | 32/25, 23/18 | ^M3 | ^F# |
24 | 443.08 | 128/99, 22/17, 31/24, 40/31 | ^^M3 | ^^F# |
25 | 461.54 | 72/55, 30/23, 47/36 | vv4 | vvG |
26 | 480.00 | 33/25, 29/22, 62/47 | v4 | vG |
27 | 498.46 | 4/3 | P4 | G |
28 | 516.92 | 27/20, 23/17, 31/23 | ^4 | ^G |
29 | 535.38 | 15/11, 34/25, 64/47 | v~4 | ^^G |
30 | 553.85 | 11/8, 40/29, 62/45 | ~4 | ^^^G |
31 | 572.31 | 25/18, 32/23 | ^~4/vd5 | vvG#/vAb |
32 | 590.77 | 45/32, 38/27, 31/22, 24/17 | vA4/d5 | vG#/Ab |
33 | 609.23 | 64/45 | A4/^d5 | G#/^Ab |
34 | 627.69 | 36/25 | ^A4/v~5 | ^G#/^^Ab |
35 | 646.15 | 16/11 | ~5 | vvvA |
36 | 664.62 | 22/15 | ^~5 | vvA |
37 | 683.08 | 40/27 | v5 | vA |
38 | 701.54 | 3/2 | P5 | A |
39 | 720.00 | 50/33 | ^5 | ^A |
40 | 738.46 | 55/36 | ^^5 | ^^A |
41 | 756.92 | 99/64 | vvm6 | vvBb |
42 | 775.38 | 25/16 | vm6 | vBb |
43 | 793.85 | 128/81 | m6 | Bb |
44 | 812.31 | 8/5 | ^m6 | ^Bb |
45 | 830.77 | 21/13 | v~6 | ^^Bb |
46 | 849.23 | 18/11, 44/27 | ~6 | vvvB |
47 | 867.69 | 33/20 | ^~6 | vvB |
48 | 886.15 | 5/3 | vM6 | vB |
49 | 904.62 | 27/16 | M6 | B |
50 | 923.08 | 128/75 | ^M6 | ^B |
51 | 941.54 | 55/32 | ^^M6 | ^^B |
52 | 960.00 | 96/55 | vvm7 | vvC |
53 | 978.46 | 44/25 | vm7 | vC |
54 | 996.92 | 16/9 | m7 | C |
55 | 1015.38 | 9/5 | ^m7 | ^C |
56 | 1033.85 | 20/11 | v~7 | ^^C |
57 | 1052.31 | 11/6 | ~7 | ^^^C |
58 | 1070.77 | 13/7 | ^~7 | vvC# |
59 | 1089.23 | 15/8 | vM7 | vC# |
60 | 1107.69 | 243/128, 256/135 | M7 | C# |
61 | 1126.15 | 48/25 | ^M7 | ^C# |
62 | 1144.62 | 64/33 | ^^M7 | ^^C# |
63 | 1163.08 | 88/45, 108/55, 125/64 | vv8 | vvD |
64 | 1181.54 | 160/81, 99/50, 240/121 | v8 | vD |
65 | 1200.00 | 2/1 | P8 | D |
* based on treating 65edo as a 2.3.5.11.13/7.17.19.23.29.31.47 subgroup temperament.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-103 65⟩ | [⟨65 103]] | +0.131 | 0.131 | 0.71 |
2.3.5 | 32805/32768, 78732/78125 | [⟨65 103 151]] | -0.110 | 0.358 | 1.94 |
2.3.5.11 | 243/242, 4000/3993, 5632/5625 | [⟨65 103 151 225]] | -0.266 | 0.410 | 2.22 |
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 3\65 | 55.38 | 33/32 | Escapade |
1 | 9\65 | 166.15 | 11/10 | Squirrel etc. |
1 | 12\65 | 221.54 | 25/22 | Hemisensi |
1 | 19\65 | 350.77 | 11/9 | Karadeniz |
1 | 21\65 | 387.69 | 5/4 | Würschmidt |
1 | 24\65 | 443.08 | 162/125 | Sensipent |
1 | 27\65 | 498.46 | 4/3 | Helmholtz / photia |
1 | 28\65 | 516.92 | 27/20 | Gravity |
5 | 20\65 (6\65) |
369.23 (110.77) |
10125/8192 (16/15) |
Qintosec |
5 | 27\65 (1\65) |
498.46 (18.46) |
4/3 (81/80) |
Pental |
5 | 30\65 (4\65) |
553.85 (73.85) |
11/8 (25/24) |
Trisedodge / countdown |