Quintosec family
The quintosec family tempers out the quintosec comma, 140737488355328/140126044921875 = [47 -15 -10⟩.
Quintosec
Quintosec is naturally a 2.3.5.11-subgroup temperament. It was documented as qintosec on the temperament finder, which was probably due to a typo[1]. The original, intended spelling is now restored, and the distinctive no-u form is relegated to the lower-accuracy 7-limit extension considered below.
Subgroup: 2.3.5
Comma list: [47 -15 -10⟩
Mapping: [⟨5 1 22], ⟨0 2 -3]]
- Mapping generators: ~524288/455625, ~16384/10125
- CTE: ~524288/455625 = 1\5, ~16384/10125 = 831.1061 (~16/15 = 111.1061)
- POTE: ~524288/455625 = 1\5, ~16384/10125 = 831.1051 (~16/15 = 111.1051)
Optimal ET sequence: 10, 45c, 55, 65, 140, 205, 270, 1955c, 2225c, 2495bc, 2765bc, 3035bc, 3305bcc, 3575bcc
Badness: 0.139191
2.3.5.11 subgroup
Subgroup: 2.3.5.11
Comma list: 5632/5625, 26214400/26198073
Mapping: [⟨5 1 22 45], ⟨0 2 -3 -8]]
Optimal tunings:
- CTE: ~1024/891 = 1\5, ~160/99 = 831.0932 (~16/15 = 111.0932)
- CWE: ~1024/891 = 1\5, ~160/99 = 831.0743 (~16/15 = 111.0743)
Optimal ET sequence: 10e, 55e, 65, 205, 270, 335, 605, 940, 1545c
Badness: 0.0195
Qintosec
Qintosec can be described as the 10 & 65d temperament, tempering out the marvel comma, 225/224 in the 7-limit.
Subgroup: 2.3.5.7
Comma list: 225/224, 2560000/2470629
Mapping: [⟨5 1 22 21], ⟨0 2 -3 -2]]
Wedgie: ⟨⟨ 10 -15 -10 -47 -44 19 ]]
Optimal tunings:
- CTE: ~400/343 = 1\5, ~80/49 = 831.7095 (~15/14 = 111.7095)
- POTE: ~400/343 = 1\5, ~80/49 = 831.5525 (~15/14 = 111.5525)
Optimal ET sequence: 10, …, 55d, 65d, 75, 140d
Badness: 0.156764
11-limit
Subgroup: 2.3.5.7.11
Comma list: 225/224, 243/242, 3840/3773
Mapping: [⟨5 1 22 21 0], ⟨0 2 -3 -2 5]]
Optimal tunings:
- CTE: ~55/48 = 1\5, ~80/49 = 831.1939 (~15/14 = 111.1939)
- POTE: ~55/48 = 1\5, ~80/49 = 831.3110 (~15/14 = 111.3110)
Optimal ET sequence: 10, 55d, 65d, 140de
Badness: 0.077907
Qinto
Subgroup: 2.3.5.7.11
Comma list: 225/224, 385/384, 332750/321489
Mapping: [⟨5 1 22 21 -7], ⟨0 2 -3 -2 7]]
Optimal tunings:
- CTE: ~220/189 = 1\5, ~44/27 = 832.4051 (~15/14 = 112.4051)
- POTE: ~220/189 = 1\5, ~44/27 = 832.4480 (~15/14 = 112.4480)
Badness: 0.127732
Sengasec
Sengasec can be described as the 10 & 55 temperament, tempering out the cloudy comma, 16807/16384 and the sengic comma, 686/675 in the 7-limit.
Subgroup: 2.3.5.7
Comma list: 686/675, 16807/16384
Mapping: [⟨5 1 22 14], ⟨0 2 -3 0]]
Wedgie: ⟨⟨ 10 -15 0 -47 -28 42 ]]
- CTE: ~8/7 = 1\5, ~45/28 = 831.1061 (~16/15 = 111.1061)
- POTE: ~8/7 = 1\5, ~45/28 = 831.1126 (~16/15 = 111.1126)
Optimal ET sequence: 10, …, 55, 65, 140dd
Badness: 0.156259
11-limit
Subgroup: 2.3.5.7.11
Comma list: 243/242, 385/384, 686/675
Mapping: [⟨5 1 22 14 0], ⟨0 2 -3 0 5]]
Optimal tunings:
- CTE: ~8/7 = 1\5, ~45/28 = 830.7772 (~16/15 = 110.7772)
- POTE: ~8/7 = 1\5, ~45/28 = 830.6592 (~16/15 = 110.6592)
Optimal ET sequence: 10, 55, 65
Badness: 0.081607
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 144/143, 243/242, 686/675
Mapping: [⟨5 1 22 14 0 22], ⟨0 2 -3 0 5 -1]]
Optimal tunings:
- CTE: ~8/7 = 1\5, ~45/28 = 830.8942 (~16/15 = 110.8942)
- POTE: ~8/7 = 1\5, ~45/28 = 830.9099 (~16/15 = 110.9099)
Optimal ET sequence: 10, 55, 65
Badness: 0.056390
Decoid
Decoid tempers out 2401/2400 and 67108864/66976875, as well as the linus comma, [11 -10 -10 10⟩. Either 8/7 or 16/15 can be used as its generator. It may be described as the 130 & 270 temperament, and as one might expect, 181\940 or 233\1210 makes for an excellent tuning choice.
Subgroup: 2.3.5.7
Comma list: 2401/2400, 67108864/66976875
Mapping: [⟨10 0 47 36], ⟨0 2 -3 -1]]
- Mapping generators: ~15/14, ~8192/4725
Wedgie: ⟨⟨ 20 -30 -10 -94 -72 61 ]]
- CTE: ~15/14 = 1\10, ~8192/4725 = 951.1086 (~16/15 = 111.1086, or ~225/224 = 8.8914)
- POTE: ~15/14 = 1\10, ~8192/4725 = 951.0987 (~16/15 = 111.0987, or ~225/224 = 8.9013)
Optimal ET sequence: 10, …, 130, 270, 2020c, 2290c, 2560c, 2830bc, 3100bcc, 3370bcc, 3640bcc
Badness: 0.033902
11-limit
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 5632/5625, 9801/9800
Mapping: [⟨10 0 47 36 98], ⟨0 2 -3 -1 -8]]
Optimal tunings:
- CTE: ~15/14 = 1\10, ~400/231 = 951.0943 (~16/15 = 111.0943, or ~225/224 = 8.9057)
- POTE: ~15/14 = 1\10, ~400/231 = 951.0700 (~16/15 = 111.0700, or ~225/224 = 8.9300)
Optimal ET sequence: 10e, …, 130, 270, 670, 940, 1210, 2150c
Badness: 0.018735
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 1716/1715, 4096/4095
Mapping: [⟨10 0 47 36 98 37], ⟨0 2 -3 -1 -8 0]]
Optimal tunings:
- CTE: ~15/14 = 1\10, ~26/15 = 951.0943 (~16/15 = 111.0943, or ~196/195 = 8.9057)
- POTE: ~15/14 = 1\10, ~26/15 = 951.0832 (~16/15 = 111.0832, or ~196/195 = 8.9168)
Optimal ET sequence: 10e, …, 130, 270, 940, 1210f, 1480cf
Badness: 0.013475
Triacontoid
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 42592/42525, 1771561/1769472
Mapping: [⟨30 0 141 108 80], ⟨0 2 -3 -1 1]]
- Mapping generators: ~45/44, ~8192/4725
Optimal tunings:
- CTE: ~45/44 = 1\30, ~8192/4725 = 951.1137 (~225/224 = 8.8863)
- POTE: ~45/44 = 1\30, ~8192/4725 = 951.1121 (~225/224 = 8.8879)
Optimal ET sequence: 120, 150, 270
Badness: 0.075991
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 2401/2400, 4096/4095, 6656/6655
Mapping: [⟨30 0 141 108 80 111], ⟨0 2 -3 -1 1 0]]
Optimal tunings:
- CTE: ~45/44 = 1\30, ~26/15 = 951.1137 (~196/195 = 8.8863)
- POTE: ~45/44 = 1\30, ~26/15 = 951.1130 (~196/195 = 8.8870)
Optimal ET sequence: 120, 150, 270
Badness: 0.040873