(38 intermediate revisions by 22 users not shown) Line 1:
Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-12-29 17:52:06 UTC</tt>.<br>
: The original revision id was <tt>602901548</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=<span style="color: #006118; font-family: 'Times New Roman',Times,serif; font-size: 113%;">57 tone equal temperament</span>=
//57edo// divides the [[octave]] into 57 parts of size 21.053. It can be used to tune [[mothra temperament]], and is an excellent tuning for the 2.5/3.7.11.13.17.19 [[just intonation subgroup]]. One way to describe 57 is that it has a [[5-limit]] part consisting of three versions of 19, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate 11/8, which is 26\57. This gives the [[19-limit]] 46&57 temperament [[Sensipent family|Heinz]].
== Theory ==
57edo is an excellent tuning for the 2.5/3.7.11.13.17.19 [[just intonation subgroup]]. One way to describe 57edo is that it has a [[5-limit]] part consisting of three [[ring number|ring]]s of 19edo , plus a no-threes no-fives part which is much more accurate.
[[5-limit]] [[comma]]s: 81/80, 3125/3072
Using the full prime-limit [[patent val]], the equal temperament tempers out [[81/80]], [[1029/1024]], and [[3125/3072]] in the 7 -limit; and [[99/98 ]], [[385/384 ]], [[441 /440]] , and [[625/616]] in the [[11-limit]]. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate [[11 /8]], which is 26\57. This gives the [[19-limit]] 46 & 57 temperament [[heinz]]. It can also be used to tune [[mothra]] as well as [[trismegistus]].
[[7-limit]] commas: 81/80, 3125/3072, 1029/1024
=== Odd harmonics ===
{{Harmonics in equal|57}}
[[11-limit]] commas: 99/98, 385/384, 441/440, 625/616
=== Subsets and supersets ===
57edo contains [[3edo ]] and [[19edo]] as subsets.
==Intervals==
== Intervals ==
||~ [[Degree]] ||~ Size ([[cent|Cents]]) ||
{ | class="wikitable center-1 right-2 center-3 center-4"
||= 0 ||> 0.0000 ||
|-
||= 1 ||> 21.0526 ||
! #
||= 2 ||> 42.1053 ||
! [[Cent ]]s
||= 3 ||> 63.1579 ||
! [[Ups and downs notation |Ups and downs notation]]<br> (Flat Fifth 11\19)
||= 4 ||> 84.2105 ||
! [[Ups and downs notation |Ups and downs notation ]]<br>(Sharp Fifth 34\57 )
||= 5 ||> 105.2632 ||
|-
||= 6 ||> 126.3158 ||
| 0
||= 7 ||> 147.3684 ||
| 0.00
||= 8 ||> 168.4211 ||
| {{UDnote |step =0}}
||= 9 ||> 189.4737 ||
| {{UDnote |fifth=34|step= 0}}
||= 10 ||> 210.5263 ||
|-
||= 11 ||> 231.5789 ||
| 1
||= 12 ||> 252.6316 ||
| 21 .05
||= 13 ||> 273.6842 ||
| {{UDnote |step=1}}
||= 14 ||> 294.7368 ||
| {{UDnote|fifth=34 |step =1}}
||= 15 ||> 315.7895 ||
|-
||= 16 ||> 336.8421 ||
| 2
||= 17 ||> 357.8947 ||
| 42 .11
||= 18 ||> 378.9474 ||
| {{UDnote |step=2}}
||= 19 ||> 400.0000 ||
| {{UDnote |fifth=34|step =2}}
||= 20 ||> 421.0526 ||
|-
||= 21 ||> 442.1053 ||
| 3
||= 22 ||> 463.1579 ||
| 63 .16
||= 23 ||> 484.2105 ||
| {{UDnote |step=3}}
||= 24 ||> 505.2632 ||
| {{UDnote|fifth=34 |step =3}}
||= 25 ||> 526.3158 ||
|-
||= 26 ||> 547.3684 ||
| 4
||= 27 ||> 568.4211 ||
| 84 .21
||= 28 ||> 589.4737 ||
| {{UDnote |step=4}}
||= 29 ||> 610.5263 ||
| {{UDnote|fifth=34 |step =4}}
||= 30 ||> 631.5789 ||
|-
||= 31 ||> 652.6316 ||
| 5
||= 32 ||> 673.6842 ||
| 105 .26
||= 33 ||> 694.7368 ||
| {{UDnote |step=5}}
||= 34 ||> 715.7895 ||
| {{UDnote |fifth=34|step =5}}
||= 35 ||> 736.8421 ||
|-
||= 36 ||> 757.8947 ||
| 6
||= 37 ||> 778.9474 ||
| 126 .32
||= 38 ||> 800.0000 ||
| {{UDnote |step=6}}
||= 39 ||> 821.0526 ||
| {{UDnote|fifth=34 |step =6}}
||= 40 ||> 842.1053 ||
|-
||= 41 ||> 863.1579 ||
| 7
||= 42 ||> 884.2105 ||
| 147 .37
||= 43 ||> 905.2632 ||
| {{UDnote |step=7}}
||= 44 ||> 926.3158 ||
| {{UDnote |fifth=34|step =7}}
||= 45 ||> 947.3684 ||
|-
||= 46 ||> 968.4211 ||
| 8
||= 47 ||> 989.4737 ||
| 168 .42
||= 48 ||> 1010.5263 ||
| {{UDnote |step=8}}
||= 49 ||> 1031.5789 ||
| {{UDnote|fifth=34 |step =8}}
||= 50 ||> 1052.6316 ||
|-
||= 51 ||> 1073.6842 ||
| 9
||= 52 ||> 1094.7368 ||
| 189 .47
||= 53 ||> 1115.7895 ||
| {{UDnote |step=9}}
||= 54 ||> 1136.8421 ||
| {{UDnote |fifth=34|step =9}}
||= 55 ||> 1157.8947 ||
|-
||= 56 ||> 1178.9474 ||
| 10
||= 57 ||> 1200.0000 ||
| 210 .53
| {{UDnote |step=10}}
| {{UDnote|fifth=34 |step =10}}
|-
| 11
| 231 .58
| {{UDnote |step=11}}
| {{UDnote |fifth=34|step =11}}
|-
| 12
| 252 .63
| {{UDnote |step=12}}
| {{UDnote|fifth=34 |step =12}}
|-
| 13
| 273 .68
| {{UDnote |step=13}}
| {{UDnote |fifth=34|step =13}}
|-
| 14
| 294 .74
| {{UDnote |step=14}}
| {{UDnote |fifth=34|step =14}}
|-
| 15
| 315 .79
| {{UDnote |step=15}}
| {{UDnote |fifth=34|step =15}}
|-
| 16
| 336 .84
| {{UDnote |step=16}}
| {{UDnote|fifth=34 |step =16}}
|-
| 17
| 357 .89
| {{UDnote |step=17}}
| {{UDnote|fifth=34 |step =17}}
|-
| 18
| 378 .95
| {{UDnote |step=18}}
| {{UDnote|fifth=34 |step =18}}
|-
| 19
| 400 .00
| {{UDnote |step=19}}
| {{UDnote|fifth=34 |step =19}}
|-
| 20
| 421 .05
| {{UDnote |step=20}}
| {{UDnote |fifth=34|step =20}}
|-
| 21
| 442 .11
| {{UDnote |step=21}}
| {{UDnote|fifth=34 |step =21}}
|-
| 22
| 463 .16
| {{UDnote |step=22}}
| {{UDnote |fifth=34|step =22}}
|-
| 23
| 484 .21
| {{UDnote |step=23}}
| {{UDnote |fifth=34|step =23}}
|-
| 24
| 505 .26
| {{UDnote |step=24}}
| {{UDnote |fifth=34|step =24}}
|-
| 25
| 526 .32
| {{UDnote |step=25}}
| {{UDnote|fifth=34 |step =25}}
|-
| 26
| 547 .37
| {{UDnote |step=26}}
| {{UDnote |fifth=34|step =26}}
|-
| 27
| 568 .42
| {{UDnote |step=27}}
| {{UDnote|fifth=34 |step =27}}
|-
| 28
| 589 .47
| {{UDnote |step=28}}
| {{UDnote|fifth=34 |step =28}}
|-
| 29
| 610 .53
| {{UDnote |step=29}}
| {{UDnote|fifth=34 |step =29}}
|-
| 30
| 631 .58
| {{UDnote |step=30}}
| {{UDnote|fifth=34 |step =30}}
|-
| 31
| 652 .63
| {{UDnote |step=31}}
| {{UDnote|fifth=34 |step =31}}
|-
| 32
| 673 .68
| {{UDnote |step=32}}
| {{UDnote|fifth=34 |step =32}}
|-
| 33
| 694 .74
| {{UDnote |step=33}}
| {{UDnote |fifth=34|step =33}}
|-
| 34
| 715 .79
| {{UDnote |step=34}}
| {{UDnote |fifth =34|step=34}}
|-
| 35
| 736 .84
| {{UDnote |step=35}}
| {{UDnote |fifth=34|step =35}}
|-
| 36
| 757 .89
| {{UDnote |step=36}}
| {{UDnote|fifth=34 |step =36}}
|-
| 37
| 778 .95
| {{UDnote |step=37}}
| {{UDnote |fifth=34|step =37}}
|-
| 38
| 800 .00
| {{UDnote |step=38}}
| {{UDnote |fifth=34|step =38}}
|-
| 39
| 821 .05
| {{UDnote |step=39}}
| {{UDnote|fifth=34 |step =39}}
|-
| 40
| 842 .11
| {{UDnote |step=40}}
| {{UDnote|fifth=34 |step =40}}
|-
| 41
| 863 .16
| {{UDnote |step=41}}
| {{UDnote |fifth=34|step =41}}
|-
| 42
| 884 .21
| {{UDnote |step=42}}
| {{UDnote|fifth=34 |step =42}}
|-
| 43
| 905 .26
| {{UDnote |step=43}}
| {{UDnote |fifth=34|step =43}}
|-
| 44
| 926 .32
| {{UDnote |step=44}}
| {{UDnote|fifth=34 |step =44}}
|-
| 45
| 947 .37
| {{UDnote |step=45}}
| {{UDnote|fifth=34 |step =45}}
|-
| 46
| 968 .42
| {{UDnote |step=46}}
| {{UDnote|fifth=34 |step =46}}
|-
| 47
| 989 .47
| {{UDnote |step=47}}
| {{UDnote|fifth=34 |step =47}}
|-
| 48
| 1010 .53
| {{UDnote |step=48}}
| {{UDnote |fifth=34|step =48}}
|-
| 49
| 1031 .58
| {{UDnote |step=49}}
| {{UDnote |fifth=34|step =49}}
|-
| 50
| 1052 .63
| {{UDnote |step=50}}
| {{UDnote |fifth=34|step =50}}
|-
| 51
| 1073 .68
| {{UDnote |step=51}}
| {{UDnote |fifth=34|step =51}}
|-
| 52
| 1094 .74
| {{UDnote |step=52}}
| {{UDnote |fifth=34|step =52}}
|-
| 53
| 1115 .79
| {{UDnote |step=53}}
| {{UDnote|fifth=34 |step =53}}
|-
| 54
| 1136 .84
| {{UDnote |step=54}}
| {{UDnote |fifth=34|step =54}}
|-
| 55
| 1157 .89
| {{UDnote |step=55}}
| {{UDnote|fifth=34 |step =55}}
|-
| 56
| 1178 .95
| {{UDnote |step=56}}
| {{UDnote |fifth=34|step =56}}
|-
| 57
| 1200 .00
| {{UDnote |step =57}}
| {{UDnote |fifth=34 |step=57}}
|}
__**Modes of** **57edo**__
== Notation ==
2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3MOS of type 18L 21s (augene)</pre></div>
=== Ups and downs notation ===
<h4>Original HTML content:</h4>
Spoken as up , downsharp , sharp , upsharp , etc. Note that downsharp can be respelled as dup (double -up) , and upflat as dud.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>57edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x57 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #006118; font-family: 'Times New Roman',Times,serif; font-size: 113%;">57 tone equal temperament</span></h1>
{{sharpness -sharp3a}}
<br />
<em>57edo</em> divides the <a class="wiki_link" href="/octave">octave</a> into 57 parts of size 21.053. It can be used to tune <a class="wiki_link" href="/mothra%20temperament">mothra temperament</a>, and is an excellent tuning for the 2.5/3.7.11.13.17.19 <a class="wiki_link" href="/just%20intonation%20subgroup">just intonation subgroup</a>. One way to describe 57 is that it has a <a class="wiki_link" href="/5-limit">5-limit</a> part consisting of three versions of 19, plus a no-threes no-fives part which is much more accurate. A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate 11/8, which is 26\57. This gives the <a class="wiki_link" href="/19-limit">19-limit</a> 46&amp;57 temperament <a class="wiki_link" href="/Sensipent%20family">Heinz</a>.<br />
<br />
<a class="wiki_link" href="/5-limit">5-limit</a> <a class="wiki_link" href="/comma">comma</a>s: 81/80, 3125/3072<br />
<br />
<a class="wiki_link" href="/7-limit">7-limit</a> commas: 81/80, 3125/3072, 1029/1024<br />
<br />
<a class="wiki_link" href="/11-limit">11-limit</a> commas: 99/98, 385/384, 441/440, 625/616<br />
<br />
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x57 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2>
<table class="wiki_table">
Using [[Helmholtz–Ellis]] accidentals, 57edo can also be notated using [[Alternative symbols for ups and downs notation#Sharp -3|alternative ups and downs]] :
<tr>
{{Sharpness -sharp3}}
<th><a class="wiki_link" href="/Degree">Degree</a><br />
Here, a sharp raises by three steps, and a flat lowers by three steps, so arrows can be used to fill in the gap . If the arrows are taken to have their own layer of enharmonic spellings, some notes may be best spelled with double arrows .
</th>
<th>Size (<a class="wiki_link" href="/cent">Cents</a>)<br />
</th>
</tr>
<tr>
<td style="text-align: center;">0<br />
</td>
<td style="text-align: right;">0.0000<br />
</td>
</tr>
<tr>
<td style="text-align: center;">1<br />
</td>
<td style="text-align: right;">21.0526<br />
</td>
</tr>
<tr>
<td style="text-align: center;">2<br />
</td>
<td style="text-align: right;">42.1053<br />
</td>
</tr>
<tr>
<td style="text-align: center;">3<br />
</td>
<td style="text-align: right;">63.1579<br />
</td>
</tr>
<tr>
<td style="text-align: center;">4<br />
</td>
<td style="text-align: right;">84.2105<br />
</td>
</tr>
<tr>
<td style="text-align: center;">5<br />
</td>
<td style="text-align: right;">105.2632<br />
</td>
</tr>
<tr>
<td style="text-align: center;">6<br />
</td>
<td style="text-align: right;">126.3158<br />
</td>
</tr>
<tr>
<td style="text-align: center;">7<br />
</td>
<td style="text-align: right;">147.3684<br />
</td>
</tr>
<tr>
<td style="text-align: center;">8<br />
</td>
<td style="text-align: right;">168.4211<br />
</td>
</tr>
<tr>
<td style="text-align: center;">9<br />
</td>
<td style="text-align: right;">189.4737<br />
</td>
</tr>
<tr>
<td style="text-align: center;">10<br />
</td>
<td style="text-align: right;">210.5263<br />
</td>
</tr>
<tr>
<td style="text-align: center;">11<br />
</td>
<td style="text-align: right;">231.5789<br />
</td>
</tr>
<tr>
<td style="text-align: center;">12<br />
</td>
<td style="text-align: right;">252.6316<br />
</td>
</tr>
<tr>
<td style="text-align: center;">13<br />
</td>
<td style="text-align: right;">273.6842<br />
</td>
</tr>
<tr>
<td style="text-align: center;">14<br />
</td>
<td style="text-align: right;">294.7368<br />
</td>
</tr>
<tr>
<td style="text-align: center;">15<br />
</td>
<td style="text-align: right;">315.7895<br />
</td>
</tr>
<tr>
<td style="text-align: center;">16<br />
</td>
<td style="text-align: right;">336.8421<br />
</td>
</tr>
<tr>
<td style="text-align: center;">17<br />
</td>
<td style="text-align: right;">357.8947<br />
</td>
</tr>
<tr>
<td style="text-align: center;">18<br />
</td>
<td style="text-align: right;">378.9474<br />
</td>
</tr>
<tr>
<td style="text-align: center;">19<br />
</td>
<td style="text-align: right;">400.0000<br />
</td>
</tr>
<tr>
<td style="text-align: center;">20<br />
</td>
<td style="text-align: right;">421.0526<br />
</td>
</tr>
<tr>
<td style="text-align: center;">21<br />
</td>
<td style="text-align: right;">442.1053<br />
</td>
</tr>
<tr>
<td style="text-align: center;">22<br />
</td>
<td style="text-align: right;">463.1579<br />
</td>
</tr>
<tr>
<td style="text-align: center;">23<br />
</td>
<td style="text-align: right;">484.2105<br />
</td>
</tr>
<tr>
<td style="text-align: center;">24<br />
</td>
<td style="text-align: right;">505.2632<br />
</td>
</tr>
<tr>
<td style="text-align: center;">25<br />
</td>
<td style="text-align: right;">526.3158<br />
</td>
</tr>
<tr>
<td style="text-align: center;">26<br />
</td>
<td style="text-align: right;">547.3684<br />
</td>
</tr>
<tr>
<td style="text-align: center;">27<br />
</td>
<td style="text-align: right;">568.4211<br />
</td>
</tr>
<tr>
<td style="text-align: center;">28<br />
</td>
<td style="text-align: right;">589.4737<br />
</td>
</tr>
<tr>
<td style="text-align: center;">29<br />
</td>
<td style="text-align: right;">610.5263<br />
</td>
</tr>
<tr>
<td style="text-align: center;">30<br />
</td>
<td style="text-align: right;">631.5789<br />
</td>
</tr>
<tr>
<td style="text-align: center;">31<br />
</td>
<td style="text-align: right;">652.6316<br />
</td>
</tr>
<tr>
<td style="text-align: center;">32<br />
</td>
<td style="text-align: right;">673.6842<br />
</td>
</tr>
<tr>
<td style="text-align: center;">33<br />
</td>
<td style="text-align: right;">694.7368<br />
</td>
</tr>
<tr>
<td style="text-align: center;">34<br />
</td>
<td style="text-align: right;">715.7895<br />
</td>
</tr>
<tr>
<td style="text-align: center;">35<br />
</td>
<td style="text-align: right;">736.8421<br />
</td>
</tr>
<tr>
<td style="text-align: center;">36<br />
</td>
<td style="text-align: right;">757.8947<br />
</td>
</tr>
<tr>
<td style="text-align: center;">37<br />
</td>
<td style="text-align: right;">778.9474<br />
</td>
</tr>
<tr>
<td style="text-align: center;">38<br />
</td>
<td style="text-align: right;">800.0000<br />
</td>
</tr>
<tr>
<td style="text-align: center;">39<br />
</td>
<td style="text-align: right;">821.0526<br />
</td>
</tr>
<tr>
<td style="text-align: center;">40<br />
</td>
<td style="text-align: right;">842.1053<br />
</td>
</tr>
<tr>
<td style="text-align: center;">41<br />
</td>
<td style="text-align: right;">863.1579<br />
</td>
</tr>
<tr>
<td style="text-align: center;">42<br />
</td>
<td style="text-align: right;">884.2105<br />
</td>
</tr>
<tr>
<td style="text-align: center;">43<br />
</td>
<td style="text-align: right;">905.2632<br />
</td>
</tr>
<tr>
<td style="text-align: center;">44<br />
</td>
<td style="text-align: right;">926.3158<br />
</td>
</tr>
<tr>
<td style="text-align: center;">45<br />
</td>
<td style="text-align: right;">947.3684<br />
</td>
</tr>
<tr>
<td style="text-align: center;">46<br />
</td>
<td style="text-align: right;">968.4211<br />
</td>
</tr>
<tr>
<td style="text-align: center;">47<br />
</td>
<td style="text-align: right;">989.4737<br />
</td>
</tr>
<tr>
<td style="text-align: center;">48<br />
</td>
<td style="text-align: right;">1010.5263<br />
</td>
</tr>
<tr>
<td style="text-align: center;">49<br />
</td>
<td style="text-align: right;">1031.5789<br />
</td>
</tr>
<tr>
<td style="text-align: center;">50<br />
</td>
<td style="text-align: right;">1052.6316<br />
</td>
</tr>
<tr>
<td style="text-align: center;">51<br />
</td>
<td style="text-align: right;">1073.6842<br />
</td>
</tr>
<tr>
<td style="text-align: center;">52<br />
</td>
<td style="text-align: right;">1094.7368<br />
</td>
</tr>
<tr>
<td style="text-align: center;">53<br />
</td>
<td style="text-align: right;">1115.7895<br />
</td>
</tr>
<tr>
<td style="text-align: center;">54<br />
</td>
<td style="text-align: right;">1136.8421<br />
</td>
</tr>
<tr>
<td style="text-align: center;">55<br />
</td>
<td style="text-align: right;">1157.8947<br />
</td>
</tr>
<tr>
<td style="text-align: center;">56<br />
</td>
<td style="text-align: right;">1178.9474<br />
</td>
</tr>
<tr>
<td style="text-align: center;">57<br />
</td>
<td style="text-align: right;">1200.0000<br />
</td>
</tr>
</table>
<br />
=== Sagittal notation ===
<u><strong>Modes of</strong> <strong>57edo</strong></u><br />
This notation uses the same sagittal sequence as EDOs [[50edo#Sagittal notation|50]], [[64edo#Sagittal notation|64]], and [[71edo#Sagittal notation|71b]], and is a superset of the notation for [[19edo#Sagittal notation|19-EDO]].
2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3MOS of type 18L 21s (augene)</body></html></pre></div>
==== Evo flavor ====
<imagemap>
File:57-EDO_Evo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 671 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 160 106 [[1053/1024]]
default [[File:57-EDO_Evo_Sagittal.svg]]
< /imagemap>
==== Revo flavor ====
<imagemap>
File:57-EDO_Revo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 647 80 [https: //sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 160 106 [[1053 /1024]]
default [[File:57-EDO_Revo_Sagittal.svg]]
< /imagemap>
In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's [[Sagittal notation#Primary comma|primary comma]] (the comma it ''exactly'' represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it ''approximately'' represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO.
== Scales ==
* 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3mos of type 18L 21s (augene)
[[Category:Heinz]]
[[Category:Mothra]]
{{todo|add rank 2 temperaments table}}
== Instruments ==
Since 57edo contains [[19edo]] as a non-trivial subset, it would be possible to use three 19edo instruments tuned 1\57 apart from each other to play the full gamut of 57edo.
A [[Lumatone mapping for 57edo]] is available.
== Music ==
; [[Bryan Deister]]
* [https: //www.youtube.com /watch?v=4NZvSgS3ryY ''57edo improv''] (2025)
Prime factorization
3 × 19
Step size
21.0526 ¢
Fifth
33\57 (694.737 ¢) (→ 11\19 )
Semitones (A1:m2)
3:6 (63.16 ¢ : 126.3 ¢)
Dual sharp fifth
34\57 (715.789 ¢)
Dual flat fifth
33\57 (694.737 ¢) (→ 11\19 )
Dual major 2nd
10\57 (210.526 ¢)
Consistency limit
7
Distinct consistency limit
7
57 equal divisions of the octave (abbreviated 57edo or 57ed2 ), also called 57-tone equal temperament (57tet ) or 57 equal temperament (57et ) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 57 equal parts of about 21.1 ¢ each. Each step represents a frequency ratio of 21/57 , or the 57th root of 2.
Theory
57edo is an excellent tuning for the 2.5/3.7.11.13.17.19 just intonation subgroup . One way to describe 57edo is that it has a 5-limit part consisting of three rings of 19edo, plus a no-threes no-fives part which is much more accurate.
Using the full prime-limit patent val , the equal temperament tempers out 81/80 , 1029/1024 , and 3125/3072 in the 7-limit; and 99/98 , 385/384 , 441/440 , and 625/616 in the 11-limit . A good generator to exploit the 2.5/3.7.11.13.17.19 aspect of 57 is the approximate 11/8 , which is 26\57. This gives the 19-limit 46 & 57 temperament heinz . It can also be used to tune mothra as well as trismegistus .
Odd harmonics
Approximation of odd harmonics in 57edo
Harmonic
3
5
7
9
11
13
15
17
19
21
23
Error
Absolute (¢ )
-7.22
-7.37
-0.40
+6.62
-3.95
+1.58
+6.47
+0.31
-2.78
-7.62
+3.30
Relative (% )
-34.3
-35.0
-1.9
+31.4
-18.8
+7.5
+30.7
+1.5
-13.2
-36.2
+15.7
Steps (reduced )
90 (33)
132 (18)
160 (46)
181 (10)
197 (26)
211 (40)
223 (52)
233 (5)
242 (14)
250 (22)
258 (30)
Subsets and supersets
57edo contains 3edo and 19edo as subsets.
Intervals
#
Cents
Ups and downs notation (Flat Fifth 11\19)
Ups and downs notation (Sharp Fifth 34\57)
0
0.00
D
D
1
21.05
^D, ^E♭♭♭
^D, E♭
2
42.11
vD♯, vE♭♭
^^D, ^E♭
3
63.16
D♯, E♭♭
^3 D, ^^E♭
4
84.21
^D♯, ^E♭♭
^4 D, ^3 E♭
5
105.26
vD𝄪, vE♭
^5 D, ^4 E♭
6
126.32
D𝄪, E♭
v4 D♯, v5 E
7
147.37
^D𝄪, ^E♭
v3 D♯, v4 E
8
168.42
vD♯𝄪, vE
vvD♯, v3 E
9
189.47
E
vD♯, vvE
10
210.53
^E, ^F♭♭
D♯, vE
11
231.58
vE♯, vF♭
E
12
252.63
E♯, F♭
F
13
273.68
^E♯, ^F♭
^F, G♭
14
294.74
vE𝄪, vF
^^F, ^G♭
15
315.79
F
^3 F, ^^G♭
16
336.84
^F, ^G♭♭♭
^4 F, ^3 G♭
17
357.89
vF♯, vG♭♭
^5 F, ^4 G♭
18
378.95
F♯, G♭♭
v4 F♯, v5 G
19
400.00
^F♯, ^G♭♭
v3 F♯, v4 G
20
421.05
vF𝄪, vG♭
vvF♯, v3 G
21
442.11
F𝄪, G♭
vF♯, vvG
22
463.16
^F𝄪, ^G♭
F♯, vG
23
484.21
vF♯𝄪, vG
G
24
505.26
G
^G, A♭
25
526.32
^G, ^A♭♭♭
^^G, ^A♭
26
547.37
vG♯, vA♭♭
^3 G, ^^A♭
27
568.42
G♯, A♭♭
^4 G, ^3 A♭
28
589.47
^G♯, ^A♭♭
^5 G, ^4 A♭
29
610.53
vG𝄪, vA♭
v4 G♯, v5 A
30
631.58
G𝄪, A♭
v3 G♯, v4 A
31
652.63
^G𝄪, ^A♭
vvG♯, v3 A
32
673.68
vG♯𝄪, vA
vG♯, vvA
33
694.74
A
G♯, vA
34
715.79
^A, ^B♭♭♭
A
35
736.84
vA♯, vB♭♭
^A, B♭
36
757.89
A♯, B♭♭
^^A, ^B♭
37
778.95
^A♯, ^B♭♭
^3 A, ^^B♭
38
800.00
vA𝄪, vB♭
^4 A, ^3 B♭
39
821.05
A𝄪, B♭
^5 A, ^4 B♭
40
842.11
^A𝄪, ^B♭
v4 A♯, v5 B
41
863.16
vA♯𝄪, vB
v3 A♯, v4 B
42
884.21
B
vvA♯, v3 B
43
905.26
^B, ^C♭♭
vA♯, vvB
44
926.32
vB♯, vC♭
A♯, vB
45
947.37
B♯, C♭
B
46
968.42
^B♯, ^C♭
C
47
989.47
vB𝄪, vC
^C, D♭
48
1010.53
C
^^C, ^D♭
49
1031.58
^C, ^D♭♭♭
^3 C, ^^D♭
50
1052.63
vC♯, vD♭♭
^4 C, ^3 D♭
51
1073.68
C♯, D♭♭
^5 C, ^4 D♭
52
1094.74
^C♯, ^D♭♭
v4 C♯, v5 D
53
1115.79
vC𝄪, vD♭
v3 C♯, v4 D
54
1136.84
C𝄪, D♭
vvC♯, v3 D
55
1157.89
^C𝄪, ^D♭
vC♯, vvD
56
1178.95
vC♯𝄪, vD
C♯, vD
57
1200.00
D
D
Notation
Ups and downs notation
Spoken as up, downsharp, sharp, upsharp, etc. Note that downsharp can be respelled as dup (double-up), and upflat as dud.
Step offset
0
1
2
3
4
5
6
7
Sharp symbol
Flat symbol
Using Helmholtz–Ellis accidentals, 57edo can also be notated using alternative ups and downs :
Step offset
0
1
2
3
4
5
6
7
Sharp symbol
Flat symbol
Here, a sharp raises by three steps, and a flat lowers by three steps, so arrows can be used to fill in the gap. If the arrows are taken to have their own layer of enharmonic spellings, some notes may be best spelled with double arrows.
Sagittal notation
This notation uses the same sagittal sequence as EDOs 50 , 64 , and 71b , and is a superset of the notation for 19-EDO .
Evo flavor
Revo flavor
In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's primary comma (the comma it exactly represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it approximately represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO.
Scales
2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 1 - 3mos of type 18L 21s (augene)
Instruments
Since 57edo contains 19edo as a non-trivial subset, it would be possible to use three 19edo instruments tuned 1\57 apart from each other to play the full gamut of 57edo.
A Lumatone mapping for 57edo is available.
Music
Bryan Deister