Canousmic temperaments: Difference between revisions
Created page with "These are rank-2 temperaments that temper out the canousma, 4802000/4782969 = {{monzo|4 -14 3 4}}. For the rank-3 temperament, see Canou family. Note that 4802000/47..." |
m Text replacement - "Category:Temperament collections" to "Category:Temperament collections Category:Pages with mostly numerical content" Tags: Mobile edit Mobile web edit |
||
(31 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{Technical data page}} | |||
This is a collection of rank-2 temperaments that temper out the [[canousma]], 4802000/4782969 = {{monzo| 4 -14 3 4 }}. For the rank-3 temperament, see [[Canou family]]. | |||
Temperaments discussed elsewhere are: | |||
* [[Godzilla]] (+49/48 or 81/80) → [[Slendro clan #Godzilla|Slendro clan]] | |||
* ''[[Betic]]'' (+225/224) → [[Sycamore family #Betic|Sycamore family]] | |||
* ''[[Pentorwell]]'' (+1728/1715) → [[Orwellismic temperaments #Pentorwell|Orwellismic temperaments]] | |||
* ''[[Amicable]]'' (+2401/2400) → [[Breedsmic temperaments #Amicable|Breedsmic temperaments]] | |||
* [[Parakleismic]] (+3136/3125 or 4375/4374) → [[Ragismic microtemperaments #Parakleismic|Ragismic microtemperaments]] | |||
* ''[[Septiquarter]]'' (+5120/5103) → [[Hemifamity temperaments #Septiquarter|Hemifamity temperaments]] | |||
* ''[[Marthirds]]'' (+15625/15552) → [[Kleismic family #Marthirds|Kleismic family]] | |||
* ''[[Kleischismic]]'' (+32805/32768) → [[Schismatic family #Kleischismic|Schismatic family]] | |||
* ''[[Kaboom]]'' (+65625/65536) → [[Vavoom family #Kaboom|Vavoom family]] | |||
* ''[[Quartiquart]]'' (+390625/388962) → [[Quartonic family #Quartiquart|Quartonic family]] | |||
* ''[[Turkey (temperament)|Turkey]]'' (+5250987/5242880) → [[Vulture family #Turkey|Vulture family]] | |||
* ''[[Hemiquindromeda]]'' (+67108864/66976875) → [[Quindromeda family #Hemiquindromeda|Quindromeda family]] | |||
* ''[[Semiluna]]'' (+95703125/95551488) → [[Luna family #Semiluna|Luna family]] | |||
Considered below are satin and superlimmal. | |||
[[Category:Temperament]] | == Satin == | ||
[[Category:Canou]] | : ''For the 5-limit version of this temperament, see [[High badness temperaments #Satin]].'' | ||
The satin temperament (94 & 217) uses [[11/10]] as a generator, three of them gives [[4/3]], and tempers out both the [[rainy comma]] and the canousma. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 2100875/2097152, 4802000/4782969 | |||
{{Mapping|legend=1| 1 2 12 -3 | 0 -3 -70 42 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8575/7776 = 165.913 | |||
{{Optimal ET sequence|legend=1| 94, 217, 311, 839, 1150 }} | |||
[[Badness]]: 0.197207 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 4000/3993, 19712/19683, 41503/41472 | |||
Mapping: {{mapping| 1 2 12 -3 13 | 0 -3 -70 42 -69 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.915 | |||
{{Optimal ET sequence|legend=1| 94, 217, 311 }} | |||
Badness: 0.057972 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 1575/1573, 2080/2079, 4096/4095, 13720/13689 | |||
Mapping: {{mapping| 1 2 12 -3 13 -1 | 0 -3 -70 42 -69 34 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.914 | |||
{{Optimal ET sequence|legend=1| 94, 217, 311, 839e, 1150e }} | |||
Badness: 0.030316 | |||
=== 17-limit === | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 595/594, 833/832, 1156/1155, 1575/1573, 4096/4095 | |||
Mapping: {{mapping| 1 2 12 -3 13 -1 11 | 0 -3 -70 42 -69 34 -50 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.913 | |||
{{Optimal ET sequence|legend=1| 94, 217, 311, 839e, 1150eg }} | |||
Badness: 0.020007 | |||
=== 19-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 595/594, 833/832, 969/968, 1156/1155, 1216/1215, 1575/1573 | |||
Mapping: {{mapping| 1 2 12 -3 13 -1 11 16 | 0 -3 -70 42 -69 34 -50 -85 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.913 | |||
{{Optimal ET sequence|legend=1| 94, 217, 311, 839e, 1150eg }} | |||
Badness: 0.014479 | |||
=== 23-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19.23 | |||
Comma list: 595/594, 760/759, 833/832, 875/874, 969/968, 1105/1104, 1156/1155 | |||
Mapping: {{mapping| 1 2 12 -3 13 -1 11 16 16 | 0 -3 -70 42 -69 34 -50 -85 -83 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.914 | |||
{{Optimal ET sequence|legend=1| 94, 217, 311, 839ei, 1150egi }} | |||
Badness: 0.012158 | |||
== Superlimmal == | |||
The superlimmal temperament (80 & 311) uses an ever slightly sharpened [[27/25|large limma]] as the generator, nine exceed the octave by [[126/125]]. It gets all the primes up to 29 reasonably covered, but still acceptable just as a 13-limit microtemperament, judging from its [[comma basis]]. While the [[mos scale]] may not be the most effective approach, the 80-tone mos is presumably the place to start if it is used. It can also be extended to prime 37 by tempering out ([[27/25]])/([[40/37]]) = [[1000/999]], where 40/37 is notably the mediant of [[27/25]] and [[13/12]], which could be interpreted as an explanation of the sharpened limma. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 4802000/4782969, 52734375/52706752 | |||
{{Mapping|legend=1| 1 8 12 18 | 0 -57 -86 -135 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~27/25 = 135.0464 | |||
{{Optimal ET sequence|legend=1| 80, 231, 311, 1324b, 1635b }} | |||
[[Badness]]: 0.252387 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 3025/3024, 4000/3993, 1479016/1476225 | |||
Mapping: {{mapping| 1 8 12 18 11 | 0 -57 -86 -135 -67 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0455 | |||
{{Optimal ET sequence|legend=1| 80, 231, 311, 1013e, 1324be }} | |||
Badness: 0.060667 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 3025/3024, 4000/3993, 4225/4224, 4459/4455 | |||
Mapping: {{mapping| 1 8 12 18 11 1 | 0 -57 -86 -135 -67 24 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0446 | |||
{{Optimal ET sequence|legend=1| 80, 231, 311, 702, 1013e }} | |||
Badness: 0.039017 | |||
=== 17-limit === | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 595/594, 1275/1274, 2500/2499, 3025/3024, 4225/4224 | |||
Mapping: {{mapping| 1 8 12 18 11 1 6 | 0 -57 -86 -135 -67 24 -17 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0462 | |||
{{Optimal ET sequence|legend=1| 80, 231, 311 }} | |||
Badness: 0.030077 | |||
=== 19-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 595/594, 969/968, 1275/1274, 1445/1444, 1729/1728, 2500/2499 | |||
Mapping: {{mapping| 1 8 12 18 11 1 6 11 | 0 -57 -86 -135 -67 24 -17 -60 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0464 | |||
{{Optimal ET sequence|legend=1| 80, 231, 311 }} | |||
Badness: 0.020460 | |||
=== 23-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19.23 | |||
Comma list: 595/594, 760/759, 969/968, 1105/1104, 1275/1274, 1445/1444, 1496/1495 | |||
Mapping: {{mapping| 1 8 12 18 11 1 6 11 7 | 0 -57 -86 -135 -67 24 -17 -60 -22 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0458 | |||
{{Optimal ET sequence|legend=1| 80, 231, 311 }} | |||
Badness: 0.016146 | |||
=== 29-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19.23.29 | |||
Comma list: 595/594, 760/759, 784/783, 969/968, 1045/1044, 1105/1104, 1275/1274, 1496/1495 | |||
Mapping: {{mapping| 1 8 12 18 11 1 6 11 7 16 | 0 -57 -86 -135 -67 24 -17 -60 -22 -99 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0460 | |||
{{Optimal ET sequence|legend=1| 80, 231, 311 }} | |||
Badness: 0.013054 | |||
=== No-31's 37-limit === | |||
Subgroup: 2.3.5.7.11.13.17.19.23.29.37 | |||
Comma list: 595/594, 760/759, 784/783, 925/924, 969/968, 1000/999, 1045/1044, 1105/1104, 1275/1274 | |||
Mapping: {{mapping| 1 8 12 18 11 1 6 11 7 16 15 | 0 -57 -86 -135 -67 24 -17 -60 -22 -99 -87 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0460 | |||
{{Optimal ET sequence|legend=1| 80, 231, 311 }} | |||
Badness: 0.010901 | |||
[[Category:Temperament collections]] | |||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Canousmic temperaments| ]] <!-- main article --> | |||
[[Category:Canou| ]] <!-- key article --> | |||
[[Category:Rank 2]] |
Latest revision as of 00:32, 24 June 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
This is a collection of rank-2 temperaments that temper out the canousma, 4802000/4782969 = [4 -14 3 4⟩. For the rank-3 temperament, see Canou family.
Temperaments discussed elsewhere are:
- Godzilla (+49/48 or 81/80) → Slendro clan
- Betic (+225/224) → Sycamore family
- Pentorwell (+1728/1715) → Orwellismic temperaments
- Amicable (+2401/2400) → Breedsmic temperaments
- Parakleismic (+3136/3125 or 4375/4374) → Ragismic microtemperaments
- Septiquarter (+5120/5103) → Hemifamity temperaments
- Marthirds (+15625/15552) → Kleismic family
- Kleischismic (+32805/32768) → Schismatic family
- Kaboom (+65625/65536) → Vavoom family
- Quartiquart (+390625/388962) → Quartonic family
- Turkey (+5250987/5242880) → Vulture family
- Hemiquindromeda (+67108864/66976875) → Quindromeda family
- Semiluna (+95703125/95551488) → Luna family
Considered below are satin and superlimmal.
Satin
- For the 5-limit version of this temperament, see High badness temperaments #Satin.
The satin temperament (94 & 217) uses 11/10 as a generator, three of them gives 4/3, and tempers out both the rainy comma and the canousma.
Subgroup: 2.3.5.7
Comma list: 2100875/2097152, 4802000/4782969
Mapping: [⟨1 2 12 -3], ⟨0 -3 -70 42]]
Optimal tuning (POTE): ~2 = 1\1, ~8575/7776 = 165.913
Optimal ET sequence: 94, 217, 311, 839, 1150
Badness: 0.197207
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4000/3993, 19712/19683, 41503/41472
Mapping: [⟨1 2 12 -3 13], ⟨0 -3 -70 42 -69]]
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.915
Optimal ET sequence: 94, 217, 311
Badness: 0.057972
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1575/1573, 2080/2079, 4096/4095, 13720/13689
Mapping: [⟨1 2 12 -3 13 -1], ⟨0 -3 -70 42 -69 34]]
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.914
Optimal ET sequence: 94, 217, 311, 839e, 1150e
Badness: 0.030316
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 595/594, 833/832, 1156/1155, 1575/1573, 4096/4095
Mapping: [⟨1 2 12 -3 13 -1 11], ⟨0 -3 -70 42 -69 34 -50]]
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.913
Optimal ET sequence: 94, 217, 311, 839e, 1150eg
Badness: 0.020007
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 595/594, 833/832, 969/968, 1156/1155, 1216/1215, 1575/1573
Mapping: [⟨1 2 12 -3 13 -1 11 16], ⟨0 -3 -70 42 -69 34 -50 -85]]
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.913
Optimal ET sequence: 94, 217, 311, 839e, 1150eg
Badness: 0.014479
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 595/594, 760/759, 833/832, 875/874, 969/968, 1105/1104, 1156/1155
Mapping: [⟨1 2 12 -3 13 -1 11 16 16], ⟨0 -3 -70 42 -69 34 -50 -85 -83]]
Optimal tuning (POTE): ~2 = 1\1, ~11/10 = 165.914
Optimal ET sequence: 94, 217, 311, 839ei, 1150egi
Badness: 0.012158
Superlimmal
The superlimmal temperament (80 & 311) uses an ever slightly sharpened large limma as the generator, nine exceed the octave by 126/125. It gets all the primes up to 29 reasonably covered, but still acceptable just as a 13-limit microtemperament, judging from its comma basis. While the mos scale may not be the most effective approach, the 80-tone mos is presumably the place to start if it is used. It can also be extended to prime 37 by tempering out (27/25)/(40/37) = 1000/999, where 40/37 is notably the mediant of 27/25 and 13/12, which could be interpreted as an explanation of the sharpened limma.
Subgroup: 2.3.5.7
Comma list: 4802000/4782969, 52734375/52706752
Mapping: [⟨1 8 12 18], ⟨0 -57 -86 -135]]
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0464
Optimal ET sequence: 80, 231, 311, 1324b, 1635b
Badness: 0.252387
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4000/3993, 1479016/1476225
Mapping: [⟨1 8 12 18 11], ⟨0 -57 -86 -135 -67]]
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0455
Optimal ET sequence: 80, 231, 311, 1013e, 1324be
Badness: 0.060667
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 3025/3024, 4000/3993, 4225/4224, 4459/4455
Mapping: [⟨1 8 12 18 11 1], ⟨0 -57 -86 -135 -67 24]]
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0446
Optimal ET sequence: 80, 231, 311, 702, 1013e
Badness: 0.039017
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 595/594, 1275/1274, 2500/2499, 3025/3024, 4225/4224
Mapping: [⟨1 8 12 18 11 1 6], ⟨0 -57 -86 -135 -67 24 -17]]
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0462
Optimal ET sequence: 80, 231, 311
Badness: 0.030077
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 595/594, 969/968, 1275/1274, 1445/1444, 1729/1728, 2500/2499
Mapping: [⟨1 8 12 18 11 1 6 11], ⟨0 -57 -86 -135 -67 24 -17 -60]]
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0464
Optimal ET sequence: 80, 231, 311
Badness: 0.020460
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 595/594, 760/759, 969/968, 1105/1104, 1275/1274, 1445/1444, 1496/1495
Mapping: [⟨1 8 12 18 11 1 6 11 7], ⟨0 -57 -86 -135 -67 24 -17 -60 -22]]
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0458
Optimal ET sequence: 80, 231, 311
Badness: 0.016146
29-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29
Comma list: 595/594, 760/759, 784/783, 969/968, 1045/1044, 1105/1104, 1275/1274, 1496/1495
Mapping: [⟨1 8 12 18 11 1 6 11 7 16], ⟨0 -57 -86 -135 -67 24 -17 -60 -22 -99]]
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0460
Optimal ET sequence: 80, 231, 311
Badness: 0.013054
No-31's 37-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29.37
Comma list: 595/594, 760/759, 784/783, 925/924, 969/968, 1000/999, 1045/1044, 1105/1104, 1275/1274
Mapping: [⟨1 8 12 18 11 1 6 11 7 16 15], ⟨0 -57 -86 -135 -67 24 -17 -60 -22 -99 -87]]
Optimal tuning (POTE): ~2 = 1\1, ~27/25 = 135.0460
Optimal ET sequence: 80, 231, 311
Badness: 0.010901