Vulture family
The vulture family of temperaments tempers out the vulture comma (monzo: [24 -21 4⟩, ratio: 10485760000/10460353203), a small 5-limit comma of 4.2 cents.
Temperaments discussed elsewhere include terture. Considered below are septimal vulture, buzzard, condor, eagle, and turkey.
Vulture
The generator of the vulture temperament is a grave fourth of 320/243, that is, a perfect fourth minus a syntonic comma. Four of these make a perfect twelfth. Its ploidacot is alpha-tetracot.
Subgroup: 2.3.5
Comma list: 10485760000/10460353203
Mapping: [⟨1 0 -6], ⟨0 4 21]]
- mapping generators: ~2, ~320/243
- CTE: ~2 = 1200.000, ~320/243 = 475.5351
- error map: ⟨0.0000 +0.1855 -0.0758]
- POTE: ~2 = 1200.000, ~320/243 = 475.5426
- error map: ⟨0.0000 +0.2154 +0.0811]
Optimal ET sequence: 53, 164, 217, 270, 323, 2531, 2854b, 3177b, …, 4469b
Badness (Smith): 0.041431
Septimal vulture
Septimal vulture can be described as the 53 & 270 microtemperament, tempering out the ragisma, 4375/4374 and the garischisma, 33554432/33480783 ([25 -14 0 -1⟩) aside from the vulture comma. 270edo is a good tuning for this temperament, with generator 107\270. Due to being a microtemperament, to find the mapping of 7, you need 56 generators, so that the smallest mos scale that finds it is the 58-note one, though for larger scope for harmony, you could try the 111- or 164-note one. (For a much simpler mapping of 7 at the cost of higher error, you could try #Buzzard.)
Subgroup: 2.3.5.7
Comma list: 4375/4374, 33554432/33480783
Mapping: [⟨1 0 -6 25], ⟨0 4 21 -56]]
Wedgie: ⟨⟨ 4 21 -56 24 -100 -189 ]]
- CTE: ~2 = 1200.0000, ~320/243 = 475.5528
- error map: ⟨0.0000 +0.2561 +0.2945 +0.2188]
- POTE: ~2 = 1200.0000, ~320/243 = 475.5511
- error map: ⟨0.0000 +0.2495 +0.2601 +0.3106]
Optimal ET sequence: 53, 164, 217, 270, 593, 863, 1133
Badness (Smith): 0.036985
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 5632/5625, 41503/41472
Mapping: [⟨1 0 -6 25 -33], ⟨0 4 21 -56 92]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~320/243 = 475.5558
- POTE: ~2 = 1200.0000, ~320/243 = 475.5567
Optimal ET sequence: 53, 217, 270, 2107c, 2377bc
Badness (Smith): 0.031907
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 4096/4095, 4375/4374
Mapping: [⟨1 0 -6 25 -33 -7], ⟨0 4 21 -56 92 27]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~320/243 = 475.5566
- POTE: ~2 = 1200.0000, ~320/243 = 475.5572
Optimal ET sequence: 53, 217, 270
Badness (Smith): 0.018758
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 676/675, 936/935, 1001/1000, 1225/1224, 4096/4095
Mapping: [⟨1 0 -6 25 -33 -7 35], ⟨0 4 21 -56 92 27 -78]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~112/85 = 475.5613
- POTE: ~2 = 1200.0000, ~112/85 = 475.5617
Optimal ET sequence: 53, 217, 270, 487, 757g
Badness (Smith): 0.020103
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 676/675, 936/935, 1001/1000, 1216/1215, 1225/1224, 1540/1539
Mapping: [⟨1 0 -6 25 -33 -7 35 -12], ⟨0 4 21 -56 92 27 -78 41]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~25/19 = 475.5606
- POTE: ~2 = 1200.0000, , ~25/19 = 475.5615
Optimal ET sequence: 53, 217, 270, 487, 757g
Badness (Smith): 0.013850
Semivulture
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 33554432/33480783
Mapping: [⟨2 0 -12 50 41], ⟨0 4 21 -56 -43]]
- mapping generators: ~99/70, ~320/243
Optimal tunings:
- CTE: ~99/70 = 600.0000, ~320/243 = 475.5523
- POTE: ~99/70 = 600.0000, ~320/243 = 475.5496
Optimal ET sequence: 106, 164, 270, 916, 1186, 1456
Badness (Smith): 0.040799
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 3025/3024, 4096/4095, 4375/4374
Mapping: [⟨2 0 -12 50 41 -14], ⟨0 4 21 -56 -43 27]]
Optimal tunings:
- CTE: ~99/70 = 600.0000, ~320/243 = 475.5540
- POTE: ~99/70 = 600.0000, ~320/243 = 475.553
Optimal ET sequence: 106, 164, 270
Badness (Smith): 0.035458
Buzzard
Buzzard is the main extension to vulture of practical interest, finding prime 7 at only 3 generators down so that the generator is interpreted as a sharp ~21/16, but is more of a full 13-limit system in its own right. It is most naturally described as 53 & 58 (though 48edo is an interesting higher-damage tuning of it for some purposes). As one might expect, 111edo is a great tuning for it. mos scales of 3, 5, 8, 13, 18, 23, 28, 33, 38, 43, 48 or 53 notes are available.
Its S-expression-based comma list is {S6/S7, S8/S9}, with the structure of its 7-limit implied by these equivalences combined with the nontrivial JI equivalence S6 = S8 × S9. Hemifamity leverages it by splitting 36/35 into two syntonic~septimal commas, so buzzard naturally finds an interval between 6/5 and 7/6 which in the 7-limit is 32/27 and in the 13-limit is 13/11. Then the vanish of the orwellisma implies 49/48, the large septimal diesis, is equated with 36/35, so 49/48 is also split into two so that the system also finds an interval between 7/6 and 8/7 which in the 7-limit is 7/6 inflected down by a comma or 8/7 inflected up by a comma, and in the 13-limit is 15/13, so that it is clear this system naturally wants to be extended to and interpreted in the full 13-limit.
Subgroup: 2.3.5.7
Comma list: 1728/1715, 5120/5103
Mapping: [⟨1 0 -6 4], ⟨0 4 21 -3]]
Wedgie: ⟨⟨ 4 21 -3 24 -16 -66 ]]
- CTE: ~2 = 1200.000, ~21/16 = 475.555
- error map: ⟨0.000 +0.263 +0.333 +4.510]
- POTE: ~2 = 1200.000, ~21/16 = 475.636
- error map: ⟨0.000 +0.589 +2.045 +4.266]
Optimal ET sequence: 5, 48, 53, 111, 164d, 275d
Badness (Smith): 0.047963
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 540/539, 5120/5103
Mapping: [⟨1 0 -6 4 -12], ⟨0 4 21 -3 39]]
Wedgie: ⟨⟨ 4 21 -3 39 24 -16 48 -66 18 120 ]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~21/16 = 475.625
- POTE: ~2 = 1200.000, ~21/16 = 475.700
Optimal ET sequence: 53, 58, 111, 280cd
Badness (Smith): 0.034484
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 176/175, 351/350, 540/539, 676/675
Mapping: [⟨1 0 -6 4 -12 -7], ⟨0 4 21 -3 39 27]]
Wedgie: ⟨⟨ 4 21 -3 39 27 24 -16 48 28 -66 18 -15 120 87 -51 ]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~21/16 = 475.615
- POTE: ~2 = 1200.000, ~21/16 = 475.697
Optimal ET sequence: 53, 58, 111, 280cdf
Badness (Smith): 0.018842
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 176/175, 256/255, 351/350, 442/441, 540/539
Mapping: [⟨1 0 -6 4 -12 -7 14], ⟨0 4 21 -3 39 27 -25]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~21/16 = 475.638
- POTE: ~2 = 1200.000, ~21/16 = 475.692
Optimal ET sequence: 53, 58, 111
Badness (Smith): 0.018403
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 176/175, 256/255, 286/285, 324/323, 351/350, 540/539
Mapping: [⟨1 0 -6 4 -12 -7 14 -12], ⟨0 4 21 -3 39 27 -25 41]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~21/16 = 475.617
- POTE: ~2 = 1200.000, ~21/16 = 475.679
Optimal ET sequence: 53, 58h, 111
Badness (Smith): 0.015649
Buteo
Subgroup: 2.3.5.7.11
Comma list: 99/98, 385/384, 2200/2187
Mapping: [⟨1 0 -6 4 9], ⟨0 4 21 -3 -14]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~21/16 = 475.454
- POTE: ~2 = 1200.000, ~21/16 = 475.436
Optimal ET sequence: 5, 48, 53
Badness (Smith): 0.060238
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 99/98, 275/273, 385/384, 572/567
Mapping: [⟨1 0 -6 4 9 -7], ⟨0 4 21 -3 -14 27]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~21/16 = 475.495
- POTE: ~2 = 1200.000, ~21/16 = 475.464
Optimal ET sequence: 5, 48f, 53
Badness (Smith): 0.039854
Condor
Subgroup: 2.3.5.7
Comma list: 10976/10935, 40353607/40000000
Mapping: [⟨1 8 36 29], ⟨0 -12 -63 -49]]
Wedgie: ⟨⟨ 12 63 49 72 44 -63 ]]
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4791
Optimal ET sequence: 58, 159, 217
Badness: 0.154715
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 4000/3993, 10976/10935
Mapping: [⟨1 8 36 29 35], ⟨0 -12 -63 -49 -59]]
Optimal tuning (POTE): ~2 = 1\1, 81/56 = 641.4822
Optimal ET sequence: 58, 101cd, 159, 217
Badness: 0.048401
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 676/675, 10976/10935
Mapping: [⟨1 8 36 29 35 47], ⟨0 -12 -63 -49 -59 -81]]
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4797
Optimal ET sequence: 58, 159, 217
Badness: 0.025469
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 364/363, 441/440, 595/594, 676/675, 8624/8619
Mapping: [⟨1 8 36 29 35 47 -5], ⟨0 -12 -63 -49 -59 -81 17]]
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4794
Optimal ET sequence: 58, 159, 217
Badness: 0.021984
Eagle
Subgroup: 2.3.5.7
Comma list: 2401/2400, 10485760000/10460353203
Mapping: [⟨2 4 9 8], ⟨0 -8 -42 -23]]
- mapping generators: ~177147/125440, ~28/27
Wedgie: ⟨⟨ 16 84 46 96 28 -129 ]]
Optimal tuning (POTE): ~177147/125440 = 1\2, ~28/27 = 62.229
Optimal ET sequence: 58, 154c, 212, 270, 752, 1022, 1292, 2854b
Badness: 0.059498
11-limit
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 9801/9800, 19712/19683
Mapping: [⟨2 4 9 8 12], ⟨0 -8 -42 -23 -49]]
Optimal tuning (POTE): ~99/70 = 1\2, ~28/27 = 62.224
Optimal ET sequence: 58, 154ce, 212, 270
Badness: 0.024885
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 1716/1715, 10648/10647
Mapping: [⟨2 4 9 8 12 13], ⟨0 -8 -42 -23 -49 -54]]
Optimal tuning (POTE): ~99/70 = 1\2, ~28/27 = 62.220
Optimal ET sequence: 58, 154cef, 212, 270
Badness: 0.016282
Turkey
Subgroup: 2.3.5.7
Comma list: 4802000/4782969, 5250987/5242880
Mapping: [⟨1 8 36 0], ⟨0 -16 -84 7]]
Wedgie: ⟨⟨ 16 84 -7 96 -56 -252 ]]
Optimal tuning (POTE): ~2 = 1\1, ~1715/1296 = 481.120
Optimal ET sequence: 5, 207c, 212, 429
Badness: 0.210964
11-limit
Subgroup: 2.3.5.7.11
Comma list: 19712/19683, 42875/42768, 160083/160000
Mapping: [⟨1 8 36 0 64], ⟨0 -16 -84 7 -151]]
Optimal tuning (POTE): ~2 = 1\1, ~33/25 = 481.120
Badness: 0.079694
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 19712/19683, 31213/31104
Mapping: [⟨1 8 36 0 64 47], ⟨0 -16 -84 7 -151 -108]]
Optimal tuning (POTE): ~2 = 1\1, ~33/25 = 481.118
Optimal ET sequence: 212, 217, 429
Badness: 0.043787