|
|
(17 intermediate revisions by 8 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | Name = |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-14 15:38:31 UTC</tt>.<br>
| | | Periods = 5 |
| : The original revision id was <tt>566466985</tt>.<br>
| | | nLargeSteps = 10 |
| : The revision comment was: <tt></tt><br>
| | | nSmallSteps = 5 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | Equalized = 1 |
| <h4>Original Wikitext content:</h4>
| | | Collapsed = 1 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS has five periods of 2L 1s and its generator is a neutral or diatonic semitone of 1/15edo (80 cents) to 1/10edo (120). Because it is a Blacksmith scale which appears in 5n-edos, it may be referred to more clearly as the Quinary mode of Blacksmith[15].
| | | Pattern = LLsLLsLLsLLsLLs |
| || 1/15 || || || 80 || | | }} |
| || 5/70 || || || 85.714 ||
| | {{MOS intro}} |
| || || 9/125 || || 86.4 || | |
| || 4/55 || || || 87.273 || | |
| || || 7/95 || || 88.421 ||
| |
| || 3/40 || || || 90 ||
| |
| || || || || 91.026 ||
| |
| || || 8/105 || || 91.429 ||
| |
| || || || || 91.672 ||
| |
| || || 5/65 || || 92.308 ||
| |
| || || || || 93.119 || | |
| || || 7/90 || || 93.333 || | |
| || || 9/115 || || 93.913 || | |
| || || 11/140 || || 94.286 ||
| |
| || || 13/165 || || 94,5455 ||
| |
| || || 15/190 || || 94.737 ||
| |
| || || 17/215 || || 94.884 ||
| |
| || || 19/240 || || 95 ||
| |
| || 2/25 || || || 96 ||
| |
| || || 11/135 || || 97.778 ||
| |
| || || 9/110 || || 98.182 ||
| |
| || || 7/85 || || 98.8235 ||
| |
| || || || 12/145 || 99.31 ||
| |
| || || 5/60 || || 100 ||
| |
| || || || || 100.757 ||
| |
| || || 8/95 || || 101.053 ||
| |
| || || || || 101.3565 ||
| |
| || 3/35 || || || 102.857 ||
| |
| || || || || 103.524 ||
| |
| || || 10/115 || || 104.348 ||
| |
| || || 7/80 || || 105 ||
| |
| || 4/45 || || || 106.667 ||
| |
| || || 13/145 || || 107.586 ||
| |
| || || 9/100 || || 108 ||
| |
| || 5/55 || || || 109.111 ||
| |
| || 1/10 || || || 120 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>10L 5s</title></head><body>This MOS has five periods of 2L 1s and its generator is a neutral or diatonic semitone of 1/15edo (80 cents) to 1/10edo (120). Because it is a Blacksmith scale which appears in 5n-edos, it may be referred to more clearly as the Quinary mode of Blacksmith[15].<br />
| |
|
| |
|
| | == Theory == |
| | === Intervals === |
| | {{MOS intervals}} |
|
| |
|
| <table class="wiki_table">
| | === Generator chain === |
| <tr>
| | {{MOS genchain}} |
| <td>1/15<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>80<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5/70<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>85.714<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>9/125<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>86.4<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4/55<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>87.273<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>7/95<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>88.421<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3/40<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>90<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>91.026<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>8/105<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>91.429<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>91.672<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>5/65<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>92.308<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>93.119<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>7/90<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>93.333<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>9/115<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>93.913<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>11/140<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>94.286<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>13/165<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>94,5455<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>15/190<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>94.737<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>17/215<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>94.884<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>19/240<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>95<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2/25<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>96<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>11/135<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>97.778<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>9/110<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>98.182<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>7/85<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>98.8235<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>12/145<br />
| |
| </td>
| |
| <td>99.31<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>5/60<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>100<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>100.757<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>8/95<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>101.053<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>101.3565<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3/35<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>102.857<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>103.524<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>10/115<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>104.348<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>7/80<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>105<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4/45<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>106.667<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>13/145<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>107.586<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>9/100<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>108<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5/55<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>109.111<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1/10<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>120<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | === Modes === |
| | {{MOS modes}} |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum}} |
| | |
| | {{stub}} |
| | |
| | [[Category:15-tone scales]] |
10L 5s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 10 large steps and 5 small steps, with a period of 2 large steps and 1 small step that repeats every 240.0 ¢, or 5 times every octave. 10L 5s is a child scale of 5L 5s, expanding it by 5 tones. Generators that produce this scale range from 80 ¢ to 120 ¢, or from 120 ¢ to 160 ¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.
Theory
Intervals
Intervals of 10L 5s
Intervals
|
Steps subtended
|
Range in cents
|
Generic
|
Specific
|
Abbrev.
|
0-mosstep
|
Perfect 0-mosstep
|
P0ms
|
0
|
0.0 ¢
|
1-mosstep
|
Diminished 1-mosstep
|
d1ms
|
s
|
0.0 ¢ to 80.0 ¢
|
Perfect 1-mosstep
|
P1ms
|
L
|
80.0 ¢ to 120.0 ¢
|
2-mosstep
|
Perfect 2-mosstep
|
P2ms
|
L + s
|
120.0 ¢ to 160.0 ¢
|
Augmented 2-mosstep
|
A2ms
|
2L
|
160.0 ¢ to 240.0 ¢
|
3-mosstep
|
Perfect 3-mosstep
|
P3ms
|
2L + s
|
240.0 ¢
|
4-mosstep
|
Diminished 4-mosstep
|
d4ms
|
2L + 2s
|
240.0 ¢ to 320.0 ¢
|
Perfect 4-mosstep
|
P4ms
|
3L + s
|
320.0 ¢ to 360.0 ¢
|
5-mosstep
|
Perfect 5-mosstep
|
P5ms
|
3L + 2s
|
360.0 ¢ to 400.0 ¢
|
Augmented 5-mosstep
|
A5ms
|
4L + s
|
400.0 ¢ to 480.0 ¢
|
6-mosstep
|
Perfect 6-mosstep
|
P6ms
|
4L + 2s
|
480.0 ¢
|
7-mosstep
|
Diminished 7-mosstep
|
d7ms
|
4L + 3s
|
480.0 ¢ to 560.0 ¢
|
Perfect 7-mosstep
|
P7ms
|
5L + 2s
|
560.0 ¢ to 600.0 ¢
|
8-mosstep
|
Perfect 8-mosstep
|
P8ms
|
5L + 3s
|
600.0 ¢ to 640.0 ¢
|
Augmented 8-mosstep
|
A8ms
|
6L + 2s
|
640.0 ¢ to 720.0 ¢
|
9-mosstep
|
Perfect 9-mosstep
|
P9ms
|
6L + 3s
|
720.0 ¢
|
10-mosstep
|
Diminished 10-mosstep
|
d10ms
|
6L + 4s
|
720.0 ¢ to 800.0 ¢
|
Perfect 10-mosstep
|
P10ms
|
7L + 3s
|
800.0 ¢ to 840.0 ¢
|
11-mosstep
|
Perfect 11-mosstep
|
P11ms
|
7L + 4s
|
840.0 ¢ to 880.0 ¢
|
Augmented 11-mosstep
|
A11ms
|
8L + 3s
|
880.0 ¢ to 960.0 ¢
|
12-mosstep
|
Perfect 12-mosstep
|
P12ms
|
8L + 4s
|
960.0 ¢
|
13-mosstep
|
Diminished 13-mosstep
|
d13ms
|
8L + 5s
|
960.0 ¢ to 1040.0 ¢
|
Perfect 13-mosstep
|
P13ms
|
9L + 4s
|
1040.0 ¢ to 1080.0 ¢
|
14-mosstep
|
Perfect 14-mosstep
|
P14ms
|
9L + 5s
|
1080.0 ¢ to 1120.0 ¢
|
Augmented 14-mosstep
|
A14ms
|
10L + 4s
|
1120.0 ¢ to 1200.0 ¢
|
15-mosstep
|
Perfect 15-mosstep
|
P15ms
|
10L + 5s
|
1200.0 ¢
|
Generator chain
Generator chain of 10L 5s
Bright gens |
Scale degree |
Abbrev. |
Scale degree |
Abbrev. |
Scale degree |
Abbrev. |
Scale degree |
Abbrev. |
Scale degree |
Abbrev.
|
4 |
Augmented 1-mosdegree |
A1md |
Augmented 4-mosdegree |
A4md |
Augmented 7-mosdegree |
A7md |
Augmented 10-mosdegree |
A10md |
Augmented 13-mosdegree |
A13md
|
3 |
Augmented 0-mosdegree |
A0md |
Augmented 3-mosdegree |
A3md |
Augmented 6-mosdegree |
A6md |
Augmented 9-mosdegree |
A9md |
Augmented 12-mosdegree |
A12md
|
2 |
Augmented 2-mosdegree |
A2md |
Augmented 5-mosdegree |
A5md |
Augmented 8-mosdegree |
A8md |
Augmented 11-mosdegree |
A11md |
Augmented 14-mosdegree |
A14md
|
1 |
Perfect 1-mosdegree |
P1md |
Perfect 4-mosdegree |
P4md |
Perfect 7-mosdegree |
P7md |
Perfect 10-mosdegree |
P10md |
Perfect 13-mosdegree |
P13md
|
0 |
Perfect 0-mosdegree Perfect 3-mosdegree |
P0md P3md |
Perfect 3-mosdegree Perfect 6-mosdegree |
P3md P6md |
Perfect 6-mosdegree Perfect 9-mosdegree |
P6md P9md |
Perfect 9-mosdegree Perfect 12-mosdegree |
P9md P12md |
Perfect 12-mosdegree Perfect 15-mosdegree |
P12md P15md
|
−1 |
Perfect 2-mosdegree |
P2md |
Perfect 5-mosdegree |
P5md |
Perfect 8-mosdegree |
P8md |
Perfect 11-mosdegree |
P11md |
Perfect 14-mosdegree |
P14md
|
−2 |
Diminished 1-mosdegree |
d1md |
Diminished 4-mosdegree |
d4md |
Diminished 7-mosdegree |
d7md |
Diminished 10-mosdegree |
d10md |
Diminished 13-mosdegree |
d13md
|
−3 |
Diminished 3-mosdegree |
d3md |
Diminished 6-mosdegree |
d6md |
Diminished 9-mosdegree |
d9md |
Diminished 12-mosdegree |
d12md |
Diminished 15-mosdegree |
d15md
|
−4 |
Diminished 2-mosdegree |
d2md |
Diminished 5-mosdegree |
d5md |
Diminished 8-mosdegree |
d8md |
Diminished 11-mosdegree |
d11md |
Diminished 14-mosdegree |
d14md
|
Modes
Modes of 10L 5s
UDP |
Cyclic order |
Step pattern
|
10|0(5) |
1 |
LLsLLsLLsLLsLLs
|
5|5(5) |
2 |
LsLLsLLsLLsLLsL
|
0|10(5) |
3 |
sLLsLLsLLsLLsLL
|
Scale tree
Scale tree and tuning spectrum of 10L 5s
Generator(edo)
|
Cents
|
Step ratio
|
Comments(always proper)
|
Bright
|
Dark
|
L:s
|
Hardness
|
1\15
|
|
|
|
|
|
80.000
|
160.000
|
1:1
|
1.000
|
Equalized 10L 5s
|
|
|
|
|
|
6\85
|
84.706
|
155.294
|
6:5
|
1.200
|
|
|
|
|
|
5\70
|
|
85.714
|
154.286
|
5:4
|
1.250
|
|
|
|
|
|
|
9\125
|
86.400
|
153.600
|
9:7
|
1.286
|
|
|
|
|
4\55
|
|
|
87.273
|
152.727
|
4:3
|
1.333
|
Supersoft 10L 5s
|
|
|
|
|
|
11\150
|
88.000
|
152.000
|
11:8
|
1.375
|
|
|
|
|
|
7\95
|
|
88.421
|
151.579
|
7:5
|
1.400
|
|
|
|
|
|
|
10\135
|
88.889
|
151.111
|
10:7
|
1.429
|
|
|
|
3\40
|
|
|
|
90.000
|
150.000
|
3:2
|
1.500
|
Soft 10L 5s
|
|
|
|
|
|
11\145
|
91.034
|
148.966
|
11:7
|
1.571
|
|
|
|
|
|
8\105
|
|
91.429
|
148.571
|
8:5
|
1.600
|
|
|
|
|
|
|
13\170
|
91.765
|
148.235
|
13:8
|
1.625
|
|
|
|
|
5\65
|
|
|
92.308
|
147.692
|
5:3
|
1.667
|
Semisoft 10L 5s
|
|
|
|
|
|
12\155
|
92.903
|
147.097
|
12:7
|
1.714
|
|
|
|
|
|
7\90
|
|
93.333
|
146.667
|
7:4
|
1.750
|
|
|
|
|
|
|
9\115
|
93.913
|
146.087
|
9:5
|
1.800
|
|
|
2\25
|
|
|
|
|
96.000
|
144.000
|
2:1
|
2.000
|
Basic 10L 5s
|
|
|
|
|
|
9\110
|
98.182
|
141.818
|
9:4
|
2.250
|
|
|
|
|
|
7\85
|
|
98.824
|
141.176
|
7:3
|
2.333
|
|
|
|
|
|
|
12\145
|
99.310
|
140.690
|
12:5
|
2.400
|
|
|
|
|
5\60
|
|
|
100.000
|
140.000
|
5:2
|
2.500
|
Semihard 10L 5s
|
|
|
|
|
|
13\155
|
100.645
|
139.355
|
13:5
|
2.600
|
|
|
|
|
|
8\95
|
|
101.053
|
138.947
|
8:3
|
2.667
|
|
|
|
|
|
|
11\130
|
101.538
|
138.462
|
11:4
|
2.750
|
|
|
|
3\35
|
|
|
|
102.857
|
137.143
|
3:1
|
3.000
|
Hard 10L 5s
|
|
|
|
|
|
10\115
|
104.348
|
135.652
|
10:3
|
3.333
|
|
|
|
|
|
7\80
|
|
105.000
|
135.000
|
7:2
|
3.500
|
|
|
|
|
|
|
11\125
|
105.600
|
134.400
|
11:3
|
3.667
|
|
|
|
|
4\45
|
|
|
106.667
|
133.333
|
4:1
|
4.000
|
Superhard 10L 5s
|
|
|
|
|
|
9\100
|
108.000
|
132.000
|
9:2
|
4.500
|
|
|
|
|
|
5\55
|
|
109.091
|
130.909
|
5:1
|
5.000
|
|
|
|
|
|
|
6\65
|
110.769
|
129.231
|
6:1
|
6.000
|
|
1\10
|
|
|
|
|
|
120.000
|
120.000
|
1:0
|
→ ∞
|
Collapsed 10L 5s
|