Jubilismic clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Switch to Sintel's badness, WE & CWE tunings, per community consensus
m Update linking
 
(4 intermediate revisions by 2 users not shown)
Line 3: Line 3:


== Jubilic ==
== Jubilic ==
The head of this clan, jubilic, is generated by [[~]][[5/4]]. That and a semioctave give ~[[7/4]].  
The head of this clan, jubilic, is generated by [[~]][[5/4]]. That and a semioctave give ~[[7/4]]. As such, a reasonable tuning would tune the 5/4 flat and 7/4 sharp.  


[[Subgroup]]: 2.5.7
[[Subgroup]]: 2.5.7
Line 20: Line 20:
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.0086{{c}} (~8/7 = 219.9914{{c}})
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.0086{{c}} (~8/7 = 219.9914{{c}})
: error map: {{val| 0.000 -6.305 +11.183 }}
: error map: {{val| 0.000 -6.305 +11.183 }}
<!-- * [[CTE]]: ~7/5 = 600.000{{c}}, ~5/4 = 379.210{{c}} (~8/7 = 220.890{{c}})
: [[error map]]: {{val| 0.000 -7.104 +10.384 }}
* [[POTE]]: ~7/5 = 600.000{{c}}, ~5/4 = 380.840{{c}} (~8/7 = 219.160{{c}})
: error map: {{val| 0.000 -5.474 +12.014 }} -->


{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 60d }}
{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 60d }}
Line 36: Line 32:
Temperaments discussed elsewhere are:  
Temperaments discussed elsewhere are:  
* [[Decimal]] (+25/24) → [[Dicot family #Decimal|Dicot family]]
* [[Decimal]] (+25/24) → [[Dicot family #Decimal|Dicot family]]
* [[Diminished (temperament)|Diminished]] (+36/35) → [[Dimipent family #Diminished|Dimipent family]]
* [[Diminished (temperament)|Diminished]] (+36/35) → [[Diminished family #Septimal diminished|Diminished family]]
* [[Pajara]] (+64/63) → [[Diaschismic family #Pajara|Diaschismic family]]
* [[Pajara]] (+64/63) → [[Diaschismic family #Pajara|Diaschismic family]]
* ''[[Dubbla]]'' (+78125/73728) → [[Wesley family #Dubbla|Wesley family]]
* ''[[Dubbla]]'' (+78125/73728) → [[Wesley family #Dubbla|Wesley family]]
Line 53: Line 49:
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Lemba]].''
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Lemba]].''


Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth.  
Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth. It may be described as the {{nowrap| 10 & 16 }} temperament; its [[ploidacot]] is diploid tricot.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 68: Line 64:
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~8/7 = 232.2655{{c}}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~8/7 = 232.2655{{c}}
: error map: {{val| 0.000 -5.158 -18.579 -1.091 }}
: error map: {{val| 0.000 -5.158 -18.579 -1.091 }}
<!-- * [[CTE]]: ~7/5 = 600.000{{c}}, ~8/7 = 232.927{{c}}
: [[error map]]: {{val| 0.000 -3.175 -19.241 -1.753 }}
* [[POTE]]: ~7/5 = 600.000{{c}}, ~8/7 = 232.089{{c}}
: error map: {{val| 0.000 -5.689 -18.402 -0.915 }} -->


{{Optimal ET sequence|legend=1| 10, 16, 26, 36c, 62c }}
{{Optimal ET sequence|legend=1| 10, 16, 26, 36c, 62c }}
Line 87: Line 79:
* WE: ~7/5 = 601.1769{{c}}, ~8/7 = 231.4273{{c}}
* WE: ~7/5 = 601.1769{{c}}, ~8/7 = 231.4273{{c}}
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1781{{c}}
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1781{{c}}
<!-- * CTE: ~7/5 = 600.000{{c}}, ~8/7 = 231.997{{c}}
* POTE: ~7/5 = 600.000{{c}}, ~8/7 = 230.974{{c}} -->


{{Optimal ET sequence|legend=0| 10, 16, 26 }}
{{Optimal ET sequence|legend=0| 10, 16, 26 }}
Line 104: Line 94:
* WE: ~7/5 = 601.1939{{c}}, ~8/7 = 231.4261{{c}}
* WE: ~7/5 = 601.1939{{c}}, ~8/7 = 231.4261{{c}}
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1617{{c}}
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1617{{c}}
<!-- * CTE: ~7/5 = 600.000{{c}}, ~8/7 = 232.100{{c}}
* POTE: ~7/5 = 600.000{{c}}, ~8/7 = 230.966{{c}} -->


{{Optimal ET sequence|legend=0| 10, 16, 26 }}
{{Optimal ET sequence|legend=0| 10, 16, 26 }}
Line 112: Line 100:


== Astrology ==
== Astrology ==
Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3.  
Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3. It may be described as the {{nowrap| 16 & 22 }} temperament; its ploidacot is diploid pentacot.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 127: Line 115:
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5123{{c}} (~8/7 = 219.4877{{c}})
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5123{{c}} (~8/7 = 219.4877{{c}})
: error map: {{val| 0.000 +0.606 -5.801 +11.686 }}
: error map: {{val| 0.000 +0.606 -5.801 +11.686 }}
<!-- * [[CTE]]: ~7/5 = 600.000{{c}}, ~5/4 = 380.355{{c}} (~8/7 = 219.645{{c}})
: [[error map]]: {{val| 0.000 -0.180 -5.959 +11.529 }}
* [[POTE]]: ~7/5 = 600.000{{c}}, ~5/4 = 380.578{{c}} (~8/7 = 219.422{{c}})
: error map: {{val| 0.000 +0.937 -5.735 +11.752 }} -->


{{Optimal ET sequence|legend=1| 6, 16, 22, 60d }}
{{Optimal ET sequence|legend=1| 6, 16, 22, 60d }}
Line 146: Line 130:
* WE: ~7/5 = 600.0538{{c}}, ~5/4 = 380.5640{{c}} (~8/7 = 219.4897{{c}})
* WE: ~7/5 = 600.0538{{c}}, ~5/4 = 380.5640{{c}} (~8/7 = 219.4897{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5419{{c}} (~8/7 = 219.4581{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5419{{c}} (~8/7 = 219.4581{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~5/4 = 380.588 (~8/7 = 219.412{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~5/4 = 380.530 (~8/7 = 219.470{{c}}) -->


{{Optimal ET sequence|legend=0| 6, 16, 22 }}
{{Optimal ET sequence|legend=0| 6, 16, 22 }}
Line 163: Line 145:
* WE: ~7/5 = 600.7886{{c}}, ~5/4 = 380.2857{{c}} (~8/7 = 220.5028{{c}})
* WE: ~7/5 = 600.7886{{c}}, ~5/4 = 380.2857{{c}} (~8/7 = 220.5028{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.9119{{c}} (~8/7 = 220.0881{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.9119{{c}} (~8/7 = 220.0881{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~5/4 = 380.449{{c}} (~8/7 = 219.551{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~5/4 = 379.787{{c}} (~8/7 = 220.213{{c}}) -->


{{Optimal ET sequence|legend=0| 6, 16, 22, 38f }}
{{Optimal ET sequence|legend=0| 6, 16, 22, 38f }}
Line 183: Line 163:
* WE: ~7/5 = 599.8927{{c}}, ~5/4 = 379.7688{{c}} (~8/7 = 220.1239{{c}})
* WE: ~7/5 = 599.8927{{c}}, ~5/4 = 379.7688{{c}} (~8/7 = 220.1239{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.8117{{c}} (~8/7 = 220.1883{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.8117{{c}} (~8/7 = 220.1883{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~5/4 = 379.762{{c}} (~8/7 = 220.238{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~5/4 = 379.837{{c}} (~8/7 = 220.163{{c}}) -->


{{Optimal ET sequence|legend=0| 6f, 16, 22f, 38 }}
{{Optimal ET sequence|legend=0| 6f, 16, 22f, 38 }}
Line 191: Line 169:


== Walid ==
== Walid ==
This low-accuracy extension tempers out 16/15, so the perfect fifth stands in for ~8/5 as in [[father]]. Its ploidacot is diploid monocot.
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 204: Line 184:
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 750.4026{{c}} (~15/14 = 150.4026{{c}})
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 750.4026{{c}} (~15/14 = 150.4026{{c}})
: error map: {{val| 0.000 +48.448 +63.284 +80.771 }}
: error map: {{val| 0.000 +48.448 +63.284 +80.771 }}
<!-- * [[CTE]]: ~7/5 = 600.000{{c}}, ~3/2 = 754.204{{c}} (~15/14 = 154.204{{c}})
: [[error map]]: {{val| 0.000 +52.249 +59.482 +76.970 }}
* [[POTE]]: ~7/5 = 600.000{{c}}, ~3/2 = 749.415{{c}} (~15/14 = 149.415{{c}})
: error map: {{val| 0.000 +47.460 +64.271 +81.759 }} -->


{{Optimal ET sequence|legend=1| 2, 6, 8d }}
{{Optimal ET sequence|legend=1| 2, 6, 8d }}
Line 223: Line 199:
* WE: ~7/5 = 589.7684{{c}}, ~3/2 = 736.9708{{c}} (~12/11 = 147.2023{{c}})
* WE: ~7/5 = 589.7684{{c}}, ~3/2 = 736.9708{{c}} (~12/11 = 147.2023{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 750.5221{{c}} (~12/11 = 150.5221{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 750.5221{{c}} (~12/11 = 150.5221{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~3/2 = 754.205{{c}} (~12/11 = 154.205{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~3/2 = 749.756{{c}} (~12/11 = 149.756{{c}}) -->


{{Optimal ET sequence|legend=0| 2, 6, 8d }}
{{Optimal ET sequence|legend=0| 2, 6, 8d }}
Line 250: Line 224:
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~9/8 = 214.6875{{c}}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~9/8 = 214.6875{{c}}
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}
<!-- * [[CTE]]: ~7/5 = 600.000{{c}}, ~9/8 = 216.711{{c}}
: [[error map]]: {{val| 0.000 +12.801 +3.025 +14.463 }}
* [[POTE]]: ~7/5 = 600.000{{c}}, ~9/8 = 214.095{{c}}
: error map: {{val| 0.000 +10.815 -0.409 +17.079 }} -->


{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 28 }}
{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 28 }}
[[Tp tuning #T2 tuning|RMS error]]: 2.572 cents


[[Badness]] (Sintel): 0.253
[[Badness]] (Sintel): 0.253
Line 263: Line 231:
== Doublewide ==
== Doublewide ==
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Doublewide (5-limit)]].''
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Doublewide (5-limit)]].''
Doublewide is generated by a sharply tuned ~6/5 minor third, four of which and a semi-octave period give the 3rd harmonic. It may be described as the {{nowrap| 22 & 26 }} temperament; its ploidacot is diploid alpha-tetracot. An 11-limit extension is immediately available by identifying two generator steps as ~16/11. [[48edo]] makes for an excellent tuning.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 277: Line 247:
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~6/5 = 325.7353{{c}} (~7/6 = 274.2647{{c}})
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~6/5 = 325.7353{{c}} (~7/6 = 274.2647{{c}})
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}
<!-- * [[CTE]]: ~7/5 = 600.000{{c}}, ~6/5 = 325.769{{c}} (~7/6 = 274.231{{c}})
: [[error map]]: {{val| 0.000 +1.120 -9.007 +8.481 }}
* [[POTE]]: ~7/5 = 600.000{{c}}, ~6/5 = 325.719{{c}} (~7/6 = 274.281{{c}})
: error map: {{val| 0.000 +0.921 -9.156 +8.331 }} -->


{{Optimal ET sequence|legend=1| 4, 14bd, 18, 22, 48 }}
{{Optimal ET sequence|legend=1| 4, 14bd, 18, 22, 48 }}
Line 289: Line 255:
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 50/49, 99/98, 875/864
Comma list: 50/49, 99/98, 385/384


Mapping: {{mapping| 2 1 3 4 8 | 0 4 3 3 -2 }}
Mapping: {{mapping| 2 1 3 4 8 | 0 4 3 3 -2 }}
Line 296: Line 262:
* WE: ~7/5 = 600.1818{{c}}, ~6/5 = 325.6434{{c}} (~7/6 = 274.5384{{c}})
* WE: ~7/5 = 600.1818{{c}}, ~6/5 = 325.6434{{c}} (~7/6 = 274.5384{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 325.5854{{c}} (~7/6 = 274.4146{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 325.5854{{c}} (~7/6 = 274.4146{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~6/5 = 325.719{{c}} (~7/6 = 274.281{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~6/5 = 325.545{{c}} (~7/6 = 274.455{{c}}) -->


{{Optimal ET sequence|legend=0| 4, 18, 22, 48 }}
{{Optimal ET sequence|legend=0| 4, 18, 22, 48 }}
Line 313: Line 277:
* WE: ~7/5 = 599.6049{{c}}, ~6/5 = 326.8229{{c}} (~7/6 = 272.7819{{c}})
* WE: ~7/5 = 599.6049{{c}}, ~6/5 = 326.8229{{c}} (~7/6 = 272.7819{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 326.8890{{c}} (~7/6 = 273.1110{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 326.8890{{c}} (~7/6 = 273.1110{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~6/5 = 326.684{{c}} (~7/6 = 273.316{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~6/5 = 327.038{{c}} (~7/6 = 272.962{{c}}) -->


{{Optimal ET sequence|legend=0| 4e, …, 18e, 22 }}
{{Optimal ET sequence|legend=0| 4e, …, 18e, 22 }}
Line 330: Line 292:
* WE: ~7/5 = 599.5482{{c}}, ~6/5 = 327.5939{{c}} (~7/6 = 271.9543{{c}})
* WE: ~7/5 = 599.5482{{c}}, ~6/5 = 327.5939{{c}} (~7/6 = 271.9543{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 327.6706{{c}} (~7/6 = 272.3294{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 327.6706{{c}} (~7/6 = 272.3294{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~6/5 = 327.450{{c}} (~7/6 = 272.540{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~6/5 = 327.841{{c}} (~7/6 = 272.159{{c}}) -->


{{Optimal ET sequence|legend=0| 4ef, …, 18e, 22 }}
{{Optimal ET sequence|legend=0| 4ef, …, 18e, 22 }}
Line 347: Line 307:
* WE: ~7/5 = 600.9467{{c}}, ~6/5 = 323.9369{{c}} (~7/6 = 277.0098{{c}})
* WE: ~7/5 = 600.9467{{c}}, ~6/5 = 323.9369{{c}} (~7/6 = 277.0098{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.7272{{c}} (~7/6 = 276.2728{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.7272{{c}} (~7/6 = 276.2728{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~6/5 = 324.238{{c}} (~7/6 = 275.762{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~6/5 = 323.427{{c}} (~7/6 = 276.573{{c}}) -->


{{Optimal ET sequence|legend=0| 4e, 22e, 26 }}
{{Optimal ET sequence|legend=0| 4e, 22e, 26 }}
Line 364: Line 322:
* WE: ~7/5 = 600.9537{{c}}, ~6/5 = 323.9097{{c}} (~7/6 = 277.0440{{c}})
* WE: ~7/5 = 600.9537{{c}}, ~6/5 = 323.9097{{c}} (~7/6 = 277.0440{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.6876{{c}} (~7/6 = 276.3124{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.6876{{c}} (~7/6 = 276.3124{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~6/5 = 324.187{{c}} (~7/6 = 275.813{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~6/5 = 323.396{{c}} (~7/6 = 276.604{{c}}) -->


{{Optimal ET sequence|legend=0| 4ef, 22ef, 26 }}
{{Optimal ET sequence|legend=0| 4ef, 22ef, 26 }}
Line 373: Line 329:
== Elvis ==
== Elvis ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Elvis]].''
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Elvis]].''
Elvis is generated by a ptolemaic diminished fifth, tuned sharp such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. [[26edo]] makes for an obvious tuning.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 387: Line 345:
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~64/45 = 646.0539{{c}} (~64/63 = 46.0539{{c}})
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~64/45 = 646.0539{{c}} (~64/63 = 46.0539{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
<!-- * [[CTE]]: ~7/5 = 600.000{{c}}, ~64/45 = 645.313{{c}} (~64/63 = 45.313{{c}})
: [[error map]]: {{val| 0.000 -11.329 -12.879 +4.609 }}
* [[POTE]]: ~7/5 = 600.000{{c}}, ~64/45 = 646.279{{c}} (~64/63 = 46.279{{c}})
: error map: {{val| 0.000 -9.397 -17.710 -0.222 }} -->


{{Optimal ET sequence|legend=1| 2, 24c, 26 }}
{{Optimal ET sequence|legend=1| 2, 24c, 26 }}
Line 406: Line 360:
* WE: ~7/5 = 601.2186{{c}}, ~16/11 = 647.4300{{c}} (~56/55 = 46.2114{{c}})
* WE: ~7/5 = 601.2186{{c}}, ~16/11 = 647.4300{{c}} (~56/55 = 46.2114{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9681{{c}} (~56/55 = 45.9681{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9681{{c}} (~56/55 = 45.9681{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~16/11 = 645.343{{c}} (~56/55 = 45.343{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~16/11 = 646.118{{c}} (~56/55 = 46.118{{c}}) -->


{{Optimal ET sequence|legend=0| 2, 24c, 26 }}
{{Optimal ET sequence|legend=0| 2, 24c, 26 }}
Line 423: Line 375:
* WE: ~7/5 = 601.2206{{c}}, ~16/11 = 647.4219{{c}} (~56/55 = 46.2013{{c}})
* WE: ~7/5 = 601.2206{{c}}, ~16/11 = 647.4219{{c}} (~56/55 = 46.2013{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9362{{c}} (~56/55 = 45.9362{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9362{{c}} (~56/55 = 45.9362{{c}})
<!-- * CTE: ~7/5 = 600.000, ~16/11 = 645.208 (~56/55 = 45.208)
* POTE: ~7/5 = 600.000, ~16/11 = 646.108 (~56/55 = 46.108) -->


{{Optimal ET sequence|legend=0| 2f, 24cf, 26 }}
{{Optimal ET sequence|legend=0| 2f, 24cf, 26 }}
Line 432: Line 382:
== Comic ==
== Comic ==
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Comic (5-limit)]].''
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Comic (5-limit)]].''
Comic is generated by a grave fifth, tuned flat such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. [[22edo]] makes for an obvious tuning.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 446: Line 398:
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~40/27 = 654.3329{{c}} (~28/27 = 54.3329{{c}})
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~40/27 = 654.3329{{c}} (~28/27 = 54.3329{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
<!-- * [[CTE]]: ~7/5 = 600.000{{c}}, ~40/27 = 653.872{{c}} (~28/27 = 53.872{{c}})
: [[error map]]: {{val| 0.000 +5.789 -9.211 +8.277 }}
* [[POTE]]: ~7/5 = 600.000{{c}}, ~40/27 = 654.699{{c}} (~28/27 = 54.699{{c}})
: error map: {{val| 0.000 +7.444 -3.417 +14.070 }} -->


{{Optimal ET sequence|legend=1| 2cd, …, 20cd, 22 }}
{{Optimal ET sequence|legend=1| 2cd, …, 20cd, 22 }}
Line 465: Line 413:
* WE: ~7/5 = 598.8161{{c}}, ~22/15 = 653.8909{{c}} (~28/27 = 55.0747{{c}})
* WE: ~7/5 = 598.8161{{c}}, ~22/15 = 653.8909{{c}} (~28/27 = 55.0747{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.7898{{c}} (~28/27 = 54.7898{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.7898{{c}} (~28/27 = 54.7898{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~22/15 = 654.289{{c}} (~28/27 = 54.289{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~22/15 = 655.184{{c}} (~28/27 = 55.184{{c}}) -->


{{Optimal ET sequence|legend=0| 2cde, …, 20cde, 22 }}
{{Optimal ET sequence|legend=0| 2cde, …, 20cde, 22 }}
Line 482: Line 428:
* WE: ~7/5 = 600.1030{{c}}, ~22/15 = 654.5470{{c}} (~28/27 = 54.4440{{c}})
* WE: ~7/5 = 600.1030{{c}}, ~22/15 = 654.5470{{c}} (~28/27 = 54.4440{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.4665{{c}} (~28/27 = 54.4665{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.4665{{c}} (~28/27 = 54.4665{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~22/15 = 654.547{{c}} (~28/27 = 54.547{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~22/15 = 654.435{{c}} (~28/27 = 54.435{{c}}) -->


{{Optimal ET sequence|legend=0| 2cde, 20cde, 22 }}
{{Optimal ET sequence|legend=0| 2cde, 20cde, 22 }}
Line 490: Line 434:


== Bipyth ==
== Bipyth ==
: ''For the 5-limit version, see [[Syntonic–diatonic equivalence continuum #Superpyth (5-limit)]].''
Bipyth tempers out the 5-limit [[superpyth comma]], 20480/19683, making it an alternative extension of 5-limit [[superpyth]]. Its ploidacot is diploid monocot.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 505: Line 449:
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1579{{c}} (~15/14 = 109.1579{{c}})
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1579{{c}} (~15/14 = 109.1579{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
<!-- * [[CTE]]: ~7/5 = 600.000{{c}}, ~3/2 = 708.695{{c}} (~15/14 = 108.695{{c}})
: [[error map]]: {{val| 0.000 +6.740 -8.058 +9.430 }}
* [[POTE]]: ~7/5 = 600.000{{c}}, ~3/2 = 709.437{{c}} (~15/14 = 109.437{{c}})
: error map: {{val| 0.000 +7.482 -1.379 +16.109 }} -->


{{Optimal ET sequence|legend=1| 10cd, 12cd, 22 }}
{{Optimal ET sequence|legend=1| 10cd, 12cd, 22 }}
Line 524: Line 464:
* WE: ~7/5 = 599.2296{{c}}, ~3/2 = 708.3992{{c}} (~15/14 = 109.1697{{c}})
* WE: ~7/5 = 599.2296{{c}}, ~3/2 = 708.3992{{c}} (~15/14 = 109.1697{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1395{{c}} (~15/14 = 109.1395{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1395{{c}} (~15/14 = 109.1395{{c}})
<!-- * CTE: ~7/5 = 600.000{{c}}, ~3/2 = 708.813{{c}} (~15/14 = 108.813{{c}})
* POTE: ~7/5 = 600.000{{c}}, ~3/2 = 709.310{{c}} (~15/14 = 109.310{{c}}) -->


{{Optimal ET sequence|legend=0| 10cd, 12cde, 22 }}
{{Optimal ET sequence|legend=0| 10cd, 12cde, 22 }}
Line 532: Line 470:


== Sedecic ==
== Sedecic ==
Sedecic has 1/16-octave period and may be thought of as 16edo with an independent generator for prime 3. Its ploidacot is 16-ploid monocot.
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


Line 543: Line 483:
* [[CWE]]: ~128/125 = 75.0000{{c}}, ~3/2 = 700.8957{{c}} (~525/512 = 25.8957{{c}})
* [[CWE]]: ~128/125 = 75.0000{{c}}, ~3/2 = 700.8957{{c}} (~525/512 = 25.8957{{c}})
: error map: {{val| 0.000 -1.401 -11.314 +6.174 }}
: error map: {{val| 0.000 -1.401 -11.314 +6.174 }}
<!-- * [[CTE]]: ~128/125 = 75.000{{c}}, ~3/2 = 701.955{{c}} (~525/512 = 26.955{{c}})
: [[error map]]: {{val| 0.000 0.000 -11.314 +6.174 }}
* [[POTE]]: ~128/125 = 75.000{{c}}, ~3/2 = 700.554{{c}} (~525/512 = 25.554{{c}})
: error map: {{val| 0.000 -1.401 -11.314 +6.174 }} -->


{{Optimal ET sequence|legend=1| 16, 32, 48 }}
{{Optimal ET sequence|legend=1| 16, 32, 48 }}
Line 562: Line 498:
* WE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.7810{{c}} (~45/44 = 25.3476{{c}})
* WE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.7810{{c}} (~45/44 = 25.3476{{c}})
* CWE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.6780{{c}} (~45/44 = 25.6780{{c}})
* CWE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.6780{{c}} (~45/44 = 25.6780{{c}})
<!-- * CTE: ~22/21 = 75.000{{c}}, ~3/2 = 701.844{{c}} (~45/44 = 26.844{{c}})
* POTE: ~22/21 = 75.000{{c}}, ~3/2 = 700.331{{c}} (~45/44 = 25.331{{c}}) -->


{{Optimal ET sequence|legend=0| 16, 32, 48 }}
{{Optimal ET sequence|legend=0| 16, 32, 48 }}

Latest revision as of 12:38, 21 August 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The jubilismic clan tempers out the jubilisma, 50/49, which means 7/5 and 10/7 are both equated to the 600-cent tritone and the octave is divided in two.

Jubilic

The head of this clan, jubilic, is generated by ~5/4. That and a semioctave give ~7/4. As such, a reasonable tuning would tune the 5/4 flat and 7/4 sharp.

Subgroup: 2.5.7

Comma list: 50/49

Sval mapping[2 0 1], 0 1 1]]

sval mapping generators: ~7/5, ~5

Gencom mapping[2 0 0 1], 0 0 1 1]]

Optimal tunings:

  • WE: ~7/5 = 599.6673 ¢, ~5/4 = 380.6287 ¢ (~8/7 = 219.0386 ¢)
error map: -0.665 -7.016 +10.139]
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 380.0086 ¢ (~8/7 = 219.9914 ¢)
error map: 0.000 -6.305 +11.183]

Optimal ET sequence2, 4, 6, 16, 22, 60d

Badness (Sintel): 0.140

Overview to extensions

Lemba finds the perfect fifth three steps away by tempering out 1029/1024. Astrology, five steps away by tempering out 3125/3072. Decimal, two steps away by tempering out 25/24 and 49/48. Walid merges ~5/4 and ~4/3 by tempering out 16/15.

Diminished adds 36/35 and splits the ~7/5 period in a further two. Pajara adds 64/63 and slices the ~7/4 in two, with antikythera being every other step thereof. Dubbla adds 78125/73728 and slices the ~5/4 in two. Injera adds 81/80 and slices the ~5/1 in four. Octokaidecal adds 28/27. Bipelog adds 135/128. Those splits the generator into three in various ways. Hexe adds 128/125 and slices the period in three. Hedgehog adds 250/243. Elvis adds 8505/8192. Those slice the generator in five. Comic adds 2240/2187. Crepuscular adds 4375/4374. Those slice the generator in seven. Byhearted adds 19683/19208. Bipyth adds 20480/19683. Those slice the generator in nine.

Temperaments discussed elsewhere are:

Considered below are lemba, astrology, walid, antikythera, doublewide, elvis, comic, and bipyth.

Lemba

For the 5-limit version, see Miscellaneous 5-limit temperaments #Lemba.

Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth. It may be described as the 10 & 16 temperament; its ploidacot is diploid tricot.

Subgroup: 2.3.5.7

Comma list: 50/49, 525/512

Mapping[2 2 5 6], 0 3 -1 -1]]

mapping generators: ~7/5, ~8/7

Optimal tunings:

  • WE: ~7/5 = 601.4623 ¢, ~8/7 = 232.6544 ¢
error map: +2.925 -1.067 -11.656 +7.294]
  • CWE: ~7/5 = 600.0000 ¢, ~8/7 = 232.2655 ¢
error map: 0.000 -5.158 -18.579 -1.091]

Optimal ET sequence10, 16, 26, 36c, 62c

Badness (Sintel): 1.57

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 385/384

Mapping: [2 2 5 6 5], 0 3 -1 -1 5]]

Optimal tunings:

  • WE: ~7/5 = 601.1769 ¢, ~8/7 = 231.4273 ¢
  • CWE: ~7/5 = 600.0000 ¢, ~8/7 = 231.1781 ¢

Optimal ET sequence: 10, 16, 26

Badness (Sintel): 1.37

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 65/64, 78/77

Mapping: [2 2 5 6 5 7], 0 3 -1 -1 5 1]]

Optimal tunings:

  • WE: ~7/5 = 601.1939 ¢, ~8/7 = 231.4261 ¢
  • CWE: ~7/5 = 600.0000 ¢, ~8/7 = 231.1617 ¢

Optimal ET sequence: 10, 16, 26

Badness (Sintel): 1.05

Astrology

Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3. It may be described as the 16 & 22 temperament; its ploidacot is diploid pentacot.

Subgroup: 2.3.5.7

Comma list: 50/49, 3125/3072

Mapping[2 0 4 5], 0 5 1 1]]

mapping geenerators: ~7/5, ~5/4

Optimal tunings:

  • WE: ~7/5 = 599.6999 ¢, ~5/4 = 380.3881 ¢ (~8/7 = 219.3119 ¢)
error map: -0.600 -0.015 -7.126 +10.062]
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 380.5123 ¢ (~8/7 = 219.4877 ¢)
error map: 0.000 +0.606 -5.801 +11.686]

Optimal ET sequence6, 16, 22, 60d

Badness (Sintel): 2.09

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 121/120, 176/175

Mapping: [2 0 4 5 5], 0 5 1 1 3]]

Optimal tunings:

  • WE: ~7/5 = 600.0538 ¢, ~5/4 = 380.5640 ¢ (~8/7 = 219.4897 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 380.5419 ¢ (~8/7 = 219.4581 ¢)

Optimal ET sequence: 6, 16, 22

Badness (Sintel): 1.29

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 65/64, 78/77, 121/120

Mapping: [2 0 4 5 5 8], 0 5 1 1 3 -1]]

Optimal tunings:

  • WE: ~7/5 = 600.7886 ¢, ~5/4 = 380.2857 ¢ (~8/7 = 220.5028 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 379.9119 ¢ (~8/7 = 220.0881 ¢)

Optimal ET sequence: 6, 16, 22, 38f

Badness (Sintel): 1.42

Music

Horoscope

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 66/65, 105/104, 121/120

Mapping: [2 0 4 5 5 3], 0 5 1 1 3 7]]

Optimal tunings:

  • WE: ~7/5 = 599.8927 ¢, ~5/4 = 379.7688 ¢ (~8/7 = 220.1239 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 379.8117 ¢ (~8/7 = 220.1883 ¢)

Optimal ET sequence: 6f, 16, 22f, 38

Badness (Sintel): 1.46

Walid

This low-accuracy extension tempers out 16/15, so the perfect fifth stands in for ~8/5 as in father. Its ploidacot is diploid monocot.

Subgroup: 2.3.5.7

Comma list: 16/15, 50/49

Mapping[2 0 8 9], 0 1 -1 -1]]

mapping generators: ~7/5, ~3

Optimal tunings:

  • WE: ~7/5 = 589.0384 ¢, ~3/2 = 735.7242 ¢ (~15/14 = 146.6857 ¢)
error map: -21.923 +11.846 +12.193 +18.719]
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 750.4026 ¢ (~15/14 = 150.4026 ¢)
error map: 0.000 +48.448 +63.284 +80.771]

Optimal ET sequence2, 6, 8d

Badness (Sintel): 1.24

11-limit

Subgroup: 2.3.5.7.11

Comma list: 16/15, 22/21, 50/49

Mapping: [2 0 8 9 7], 0 1 -1 -1 0]]

Optimal tunings:

  • WE: ~7/5 = 589.7684 ¢, ~3/2 = 736.9708 ¢ (~12/11 = 147.2023 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 750.5221 ¢ (~12/11 = 150.5221 ¢)

Optimal ET sequence: 2, 6, 8d

Badness (Sintel): 0.965

Antikythera

Named by Gene Ward Smith in 2011[1], antikythera is every other step of pajara.

Subgroup: 2.9.5.7

Comma list: 50/49, 64/63

Sval mapping[2 0 11 12], 0 1 -1 -1]]

mapping generators: ~7/5, ~9

Gencom mapping[2 3 5 6], 0 1/2 -1 -1]]

gencom: [7/5 8/7; 50/49 64/63]

Optimal tunings:

  • WE: ~7/5 = 598.8483 ¢, ~9/8 = 213.6844 ¢
error map: -2.303 +2.864 -5.756 +10.580]
  • CWE: ~7/5 = 600.0000 ¢, ~9/8 = 214.6875 ¢
error map: 0.000 +10.778 -1.001 +16.487]

Optimal ET sequence2, 4, 6, 16, 22, 28

Badness (Sintel): 0.253

Doublewide

For the 5-limit version, see Superpyth–22 equivalence continuum #Doublewide (5-limit).

Doublewide is generated by a sharply tuned ~6/5 minor third, four of which and a semi-octave period give the 3rd harmonic. It may be described as the 22 & 26 temperament; its ploidacot is diploid alpha-tetracot. An 11-limit extension is immediately available by identifying two generator steps as ~16/11. 48edo makes for an excellent tuning.

Subgroup: 2.3.5.7

Comma list: 50/49, 875/864

Mapping[2 1 3 4], 0 4 3 3]]

mapping generators: ~7/5, ~6/5

Optimal tunings:

  • WE: ~7/5 = 600.0365 ¢, ~6/5 = 325.7389 ¢ (~7/6 = 274.2975 ¢)
error map: -2.303 +2.864 -5.756 +10.580]
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 325.7353 ¢ (~7/6 = 274.2647 ¢)
error map: 0.000 +10.778 -1.001 +16.487]

Optimal ET sequence4, 14bd, 18, 22, 48

Badness (Sintel): 1.10

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 385/384

Mapping: [2 1 3 4 8], 0 4 3 3 -2]]

Optimal tunings:

  • WE: ~7/5 = 600.1818 ¢, ~6/5 = 325.6434 ¢ (~7/6 = 274.5384 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 325.5854 ¢ (~7/6 = 274.4146 ¢)

Optimal ET sequence: 4, 18, 22, 48

Badness (Sintel): 1.06

Fleetwood

Subgroup: 2.3.5.7.11

Comma list: 50/49, 55/54, 176/175

Mapping: [2 1 3 4 2], 0 4 3 3 9]]

Optimal tunings:

  • WE: ~7/5 = 599.6049 ¢, ~6/5 = 326.8229 ¢ (~7/6 = 272.7819 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 326.8890 ¢ (~7/6 = 273.1110 ¢)

Optimal ET sequence: 4e, …, 18e, 22

Badness (Sintel): 1.16

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 55/54, 65/63, 176/175

Mapping: [2 1 3 4 2 3], 0 4 3 3 9 8]]

Optimal tunings:

  • WE: ~7/5 = 599.5482 ¢, ~6/5 = 327.5939 ¢ (~7/6 = 271.9543 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 327.6706 ¢ (~7/6 = 272.3294 ¢)

Optimal ET sequence: 4ef, …, 18e, 22

Badness (Sintel): 1.32

Cavalier

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 875/864

Mapping: [2 1 3 4 1], 0 4 3 3 11]]

Optimal tunings:

  • WE: ~7/5 = 600.9467 ¢, ~6/5 = 323.9369 ¢ (~7/6 = 277.0098 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 323.7272 ¢ (~7/6 = 276.2728 ¢)

Optimal ET sequence: 4e, 22e, 26

Badness (Sintel): 1.75

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 78/77, 325/324

Mapping: [2 1 3 4 1 2], 0 4 3 3 11 10]]

Optimal tunings:

  • WE: ~7/5 = 600.9537 ¢, ~6/5 = 323.9097 ¢ (~7/6 = 277.0440 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 323.6876 ¢ (~7/6 = 276.3124 ¢)

Optimal ET sequence: 4ef, 22ef, 26

Badness (Sintel): 1.45

Elvis

For the 5-limit version, see Miscellaneous 5-limit temperaments #Elvis.

Elvis is generated by a ptolemaic diminished fifth, tuned sharp such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. 26edo makes for an obvious tuning.

Subgroup: 2.3.5.7

Comma list: 50/49, 8505/8192

Mapping[2 1 10 11], 0 2 -5 -5]]

mapping generators: ~7/5, ~64/45

Optimal tunings:

  • WE: ~7/5 = 601.6846 ¢, ~64/45 = 648.0937 ¢ (~64/63 = 46.4091 ¢)
error map: +3.369 -4.083 -9.936 +9.236]
  • CWE: ~7/5 = 600.0000 ¢, ~64/45 = 646.0539 ¢ (~64/63 = 46.0539 ¢)
error map: 0.000 -9.847 -16.583 +0.904]

Optimal ET sequence2, 24c, 26

Badness (Sintel): 3.58

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 1344/1331

Mapping: [2 1 10 11 8], 0 2 -5 -5 -1]]

Optimal tunings:

  • WE: ~7/5 = 601.2186 ¢, ~16/11 = 647.4300 ¢ (~56/55 = 46.2114 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~16/11 = 645.9681 ¢ (~56/55 = 45.9681 ¢)

Optimal ET sequence: 2, 24c, 26

Badness (Sintel): 2.09

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 78/77, 1053/1024

Mapping: [2 1 10 11 8 16], 0 2 -5 -5 -1 -8]]

Optimal tunings:

  • WE: ~7/5 = 601.2206 ¢, ~16/11 = 647.4219 ¢ (~56/55 = 46.2013 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~16/11 = 645.9362 ¢ (~56/55 = 45.9362 ¢)

Optimal ET sequence: 2f, 24cf, 26

Badness (Sintel): 1.82

Comic

For the 5-limit version, see Superpyth–22 equivalence continuum #Comic (5-limit).

Comic is generated by a grave fifth, tuned flat such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. 22edo makes for an obvious tuning.

Subgroup: 2.3.5.7

Comma list: 50/49, 2240/2187

Mapping[2 1 -3 -2], 0 2 7 7]]

mapping generators: ~7/5, ~40/27

Optimal tunings:

  • WE: ~7/5 = 598.9554 ¢, ~40/27 = 653.5596 ¢ (~28/27 = 54.6042 ¢)
error map: +3.369 -4.083 -9.936 +9.236]
  • CWE: ~7/5 = 600.0000 ¢, ~40/27 = 654.3329 ¢ (~28/27 = 54.3329 ¢)
error map: 0.000 -9.847 -16.583 +0.904]

Optimal ET sequence2cd, …, 20cd, 22

Badness (Sintel): 2.14

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 2662/2625

Mapping: [2 1 -3 -2 -4], 0 2 7 7 10]]

Optimal tunings:

  • WE: ~7/5 = 598.8161 ¢, ~22/15 = 653.8909 ¢ (~28/27 = 55.0747 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~22/15 = 654.7898 ¢ (~28/27 = 54.7898 ¢)

Optimal ET sequence: 2cde, …, 20cde, 22

Badness (Sintel): 1.49

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 65/63, 99/98, 968/945

Mapping: [2 1 -3 -2 -4 3], 0 2 7 7 10 4]]

Optimal tunings:

  • WE: ~7/5 = 600.1030 ¢, ~22/15 = 654.5470 ¢ (~28/27 = 54.4440 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~22/15 = 654.4665 ¢ (~28/27 = 54.4665 ¢)

Optimal ET sequence: 2cde, 20cde, 22

Badness (Sintel): 1.71

Bipyth

Bipyth tempers out the 5-limit superpyth comma, 20480/19683, making it an alternative extension of 5-limit superpyth. Its ploidacot is diploid monocot.

Subgroup: 2.3.5.7

Comma list: 50/49, 20480/19683

Mapping[2 0 -24 -23], 0 1 9 9]]

mapping generators: ~7/5, ~3

Optimal tunings:

  • WE: ~7/5 = 598.7533 ¢, ~3/2 = 707.9630 ¢ (~15/14 = 109.2098 ¢)
error map: +3.369 -4.083 -9.936 +9.236]
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 709.1579 ¢ (~15/14 = 109.1579 ¢)
error map: 0.000 -9.847 -16.583 +0.904]

Optimal ET sequence10cd, 12cd, 22

Badness (Sintel): 4.18

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 121/120, 896/891

Mapping: [2 0 -24 -23 -9], 0 1 9 9 5]]

Optimal tunings:

  • WE: ~7/5 = 599.2296 ¢, ~3/2 = 708.3992 ¢ (~15/14 = 109.1697 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 709.1395 ¢ (~15/14 = 109.1395 ¢)

Optimal ET sequence: 10cd, 12cde, 22

Badness (Sintel): 2.34

Sedecic

Sedecic has 1/16-octave period and may be thought of as 16edo with an independent generator for prime 3. Its ploidacot is 16-ploid monocot.

Subgroup: 2.3.5.7

Comma list: 50/49, 546875/524288

Mapping[16 0 37 45], 0 1 0 0]]

Optimal tunings:

  • WE: ~128/125 = 75.0539 ¢, ~3/2 = 701.0578 ¢ (~525/512 = 25.5726 ¢)
error map: 0.000 0.000 -11.314 +6.174]
  • CWE: ~128/125 = 75.0000 ¢, ~3/2 = 700.8957 ¢ (~525/512 = 25.8957 ¢)
error map: 0.000 -1.401 -11.314 +6.174]

Optimal ET sequence16, 32, 48

Badness (Sintel): 6.73

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 385/384, 1331/1323

Mapping: [16 0 37 45 30], 0 1 0 0 1]]

Optimal tunings:

  • WE: ~22/21 = 75.0000 ¢, ~3/2 = 700.7810 ¢ (~45/44 = 25.3476 ¢)
  • CWE: ~22/21 = 75.0000 ¢, ~3/2 = 700.6780 ¢ (~45/44 = 25.6780 ¢)

Optimal ET sequence: 16, 32, 48

Badness (Sintel): 3.07

Notes