Jubilismic clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Wikispaces>genewardsmith
**Imported revision 313358964 - Original comment: **
m Update linking
 
(96 intermediate revisions by 16 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Technical data page}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
The '''jubilismic clan''' tempers out the jubilisma, [[50/49]], which means [[7/5]] and [[10/7]] are both equated to the 600-cent tritone and the [[octave]] is divided in two.
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-03-21 18:23:01 UTC</tt>.<br>
: The original revision id was <tt>313358964</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc]]


This tempers out the jubilisma, 50/49, which means 7/5 and 10/7 are identified and the octave is divided in two. Doublewide lemba and diminished are discussed below; others in the clan are pajara, decimal, injera, octokaidecal, hedgehog, bipelog and hexe, which are discussed elsewhere.
== Jubilic ==
The head of this clan, jubilic, is generated by [[~]][[5/4]]. That and a semioctave give ~[[7/4]]. As such, a reasonable tuning would tune the 5/4 flat and 7/4 sharp.  


No-threes [[POTE tuning|POTE generator]]: 380.840
[[Subgroup]]: 2.5.7


No-threes map: [&lt;2 0 1 1|, &lt;0 0 1 1|]
[[Comma list]]: 50/49
EDOs: [[10edo|10]], [[12edo|12]], [[16edo|16]], [[22edo|22]], [[104edo|104]]


=Diminished=
{{Mapping|legend=2| 2 0 1 | 0 1 1 }}
Commas: 36/35, 50/49


[[POTE tuning|POTE generator]]: ~3/2 = 699.523
: sval mapping generators: ~7/5, ~5


Map: [&lt;4 0 3 5|, &lt;0 1 1 1|]
{{Mapping|legend=3| 2 0 0 1 | 0 0 1 1 }}
EDOs: [[4edo|4]], [[12edo|12]]
Badness: 0.0224


==11-limit==
[[Optimal tuning]]s:
Commas: 36/35, 50/49, 56/55
* [[WE]]: ~7/5 = 599.6673{{c}}, ~5/4 = 380.6287{{c}} (~8/7 = 219.0386{{c}})
: [[error map]]: {{val| -0.665 -7.016 +10.139 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.0086{{c}} (~8/7 = 219.9914{{c}})
: error map: {{val| 0.000 -6.305 +11.183 }}


[[POTE tuning|POTE generator]]: ~3/2 = 709.109
{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 60d }}


Map: [&lt;4 0 3 5 14|, &lt;0 1 1 1 0|]
[[Badness]] (Sintel): 0.140
EDOs: [[4edo|4]], [[8edo|8]], [[12edo|12]], [[44edo|44]]
Badness: 0.0221


==Demolished==
=== Overview to extensions ===
Commas: 36/35, 45/44, 50/49
Lemba finds the perfect fifth three steps away by tempering out [[1029/1024]]. Astrology, five steps away by tempering out [[3125/3072]]. Decimal, two steps away by tempering out [[25/24]] and [[49/48]]. Walid merges ~5/4 and ~4/3 by tempering out [[16/15]].


POTE generator: ~3/2 = 689.881
Diminished adds 36/35 and splits the ~7/5 period in a further two. Pajara adds 64/63 and slices the ~7/4 in two, with antikythera being every other step thereof. Dubbla adds 78125/73728 and slices the ~5/4 in two. Injera adds 81/80 and slices the ~5/1 in four. Octokaidecal adds 28/27. Bipelog adds 135/128. Those splits the generator into three in various ways. Hexe adds 128/125 and slices the period in three. Hedgehog adds 250/243. Elvis adds 8505/8192. Those slice the generator in five. Comic adds 2240/2187. Crepuscular adds 4375/4374. Those slice the generator in seven. Byhearted adds 19683/19208. Bipyth adds 20480/19683. Those slice the generator in nine.  


Map: [&lt;4 0 3 5 -5|, &lt;0 1 1 1 3|]
Temperaments discussed elsewhere are:  
EDOs: 12, 28, 40de
* [[Decimal]] (+25/24) → [[Dicot family #Decimal|Dicot family]]
Badness: 0.0266
* [[Diminished (temperament)|Diminished]] (+36/35) → [[Diminished family #Septimal diminished|Diminished family]]
* [[Pajara]] (+64/63) → [[Diaschismic family #Pajara|Diaschismic family]]
* ''[[Dubbla]]'' (+78125/73728) → [[Wesley family #Dubbla|Wesley family]]
* ''[[Injera]]'' (+81/80) → [[Meantone family #Injera|Meantone family]]
* ''[[Octokaidecal]]'' (+28/27) → [[Trienstonic clan #Octokaidecal|Trienstonic clan]]
* ''[[Bipelog]]'' (+135/128) → [[Mavila #Bipelog|Mavila family]]
* ''[[Hexe]]'' (+128/125) → [[Augmented family #Hexe|Augmented family]]
* ''[[Hedgehog]]'' (+250/243) → [[Porcupine family #Hedgehog|Porcupine family]]
* ''[[Crepuscular]]'' (+4375/4374) → [[Fifive family #Crepuscular|Fifive family]]
* ''[[Byhearted]]'' (+19683/19208) → [[Tetracot family #Byhearted|Tetracot family]]


=Doublewide=
Considered below are lemba, astrology, walid, antikythera, doublewide, elvis, comic, and bipyth.
Commas: 50/49, 875/864


[[POTE tuning|POTE generator]]: ~6/5 = 325.719
== Lemba ==
{{Main| Lemba }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Lemba]].''


Map: [&lt;2 1 3 4|, &lt;0 4 3 3|]
Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth. It may be described as the {{nowrap| 10 & 16 }} temperament; its [[ploidacot]] is diploid tricot.  
EDOs: [[18edo|18]], [[22edo|22]], [[26edo]], [[48edo|48]], [[70edo|70]]
Badness: 0.0435


==11-limit==
[[Subgroup]]: 2.3.5.7
Commas: 50/49, 99/98, 875/864


[[POTE tuning|POTE generator]]: ~6/5 = 325.548
[[Comma list]]: 50/49, 525/512


Map: [&lt;2 1 3 4 8|, &lt;0 4 3 3 -2|]
{{Mapping|legend=1| 2 2 5 6 | 0 3 -1 -1 }}
EDOs: [[18edo|18]], [[22edo|22]], [[48edo|48]], [[70edo|70]], [[188edo|188]]
Badness: 0.0321


==Fleetwood==
: mapping generators: ~7/5, ~8/7
Commas: 50/49, 55/54, 176/175


POTE generator: ~6/5 = 327.038
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 601.4623{{c}}, ~8/7 = 232.6544{{c}}
: [[error map]]: {{val| +2.925 -1.067 -11.656 +7.294 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~8/7 = 232.2655{{c}}
: error map: {{val| 0.000 -5.158 -18.579 -1.091 }}


Map: [&lt;2 1 3 4 2|, &lt;0 4 3 3 9|]
{{Optimal ET sequence|legend=1| 10, 16, 26, 36c, 62c }}
EDOs: 22, 26e
Badness: 0.0352


=Lemba=
[[Badness]] (Sintel): 1.57
Commas: 50/49, 525/512


[[POTE tuning|POTE generator]]: ~8/7 = 232.089
=== 11-limit ===
Subgroup: 2.3.5.7.11


Map: [&lt;2 2 5 6|, &lt;0 3 -1 -1|]
Comma list: 45/44, 50/49, 385/384
EDOs: [[10edo|10]], [[16edo|16]], [[26edo|26]], [[62edo|62]]
Badness: 0.0622


==11-limit==
Mapping: {{mapping| 2 2 5 6 5 | 0 3 -1 -1 5 }}
Commas: 45/44, 50/49, 385/384


POTE generator: ~8/7 = 230.974
Optimal tunings:  
* WE: ~7/5 = 601.1769{{c}}, ~8/7 = 231.4273{{c}}
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1781{{c}}


Map: [&lt;2 2 5 6 5|, &lt;0 3 -1 -1 5|]
{{Optimal ET sequence|legend=0| 10, 16, 26 }}
EDOs: 10, 16, 26
Badness: 0.0416


==13-limit==
Badness (Sintel): 1.37
Commas: 45/44, 50/49, 65/64, 78/77


POTE generator: ~8/7 = 230.966
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Map: [&lt;2 2 5 6 5 7|, &lt;0 3 -1 -1 5 1|]
Comma list: 45/44, 50/49, 65/64, 78/77
EDOs: 10, 16, 26
Badness: 0.0255


=Vigintiduo=
Mapping: {{mapping| 2 2 5 6 5 7 | 0 3 -1 -1 5 1 }}
Commas: 50/49, 64/63, 245/243


POTE generator: ~11/8 = 557.563
Optimal tunings:
* WE: ~7/5 = 601.1939{{c}}, ~8/7 = 231.4261{{c}}
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1617{{c}}


Map: [&lt;22 35 51 62 0|, &lt;0 0 0 0 1|]
{{Optimal ET sequence|legend=0| 10, 16, 26 }}
EDOs: 22, 66de, 88bde, 110bd, 198bcdde
Badness: 0.0484


=Duodecim=
Badness (Sintel): 1.05
Commas: 36/35, 50/49, 64/63


POTE generator: ~11/8 = 565.023
== Astrology ==
Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3. It may be described as the {{nowrap| 16 & 22 }} temperament; its ploidacot is diploid pentacot.  


Map: [&lt;12 19 28 34 0|, &lt;0 0 0 0 1|]
[[Subgroup]]: 2.3.5.7
EDOs: 12, 24d, 36d
Badness: 30.536


=Crepuscular=
[[Comma list]]: 50/49, 3125/3072
Commas: 50/49, 4375/4374


POTE generator: ~27/25 = 140.349
{{Mapping|legend=1| 2 0 4 5 | 0 5 1 1 }}


Map: [&lt;2 2 3 4|, &lt;0 5 7 7|]
: mapping geenerators: ~7/5, ~5/4
Wedgie: &lt;&lt;10 14 14 -1 -6 -7||
EDOs: 26, 34d, 60d, 94d
Badness: 0.0867


==11-limit==
[[Optimal tuning]]s:
Commas: 50/49, 99/98, 1944/1925
* [[WE]]: ~7/5 = 599.6999{{c}}, ~5/4 = 380.3881{{c}} (~8/7 = 219.3119{{c}})
: [[error map]]: {{val| -0.600 -0.015 -7.126 +10.062 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5123{{c}} (~8/7 = 219.4877{{c}})
: error map: {{val| 0.000 +0.606 -5.801 +11.686 }}


POTE generator: ~12/11 = 140.587
{{Optimal ET sequence|legend=1| 6, 16, 22, 60d }}


Map: [&lt;2 2 3 4 6|, &lt;0 5 7 7 4|]
[[Badness]] (Sintel): 2.09
EDOs: 26, 34d, 60d, 94de
Badness: 0.0408


==13-limit==
=== 11-limit ===
Commas: 50/49, 78/77, 99/98, 144/143
Subgroup: 2.3.5.7.11


POTE generator: ~12/11 = 140.554
Comma list: 50/49, 121/120, 176/175


Map: [&lt;2 2 3 4 6 6|, &lt;0 5 7 7 4 6|]
Mapping: {{mapping| 2 0 4 5 5 | 0 5 1 1 3 }}
EDOs: 26, 34d, 60d, 94de
Badness: 0.0244


=Bipyth=
Optimal tunings:
Commas: 50/49, 20480/19683
* WE: ~7/5 = 600.0538{{c}}, ~5/4 = 380.5640{{c}} (~8/7 = 219.4897{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5419{{c}} (~8/7 = 219.4581{{c}})


POTE generator: ~3/2 = 709.437
{{Optimal ET sequence|legend=0| 6, 16, 22 }}


Map: [&lt;2 0 -24 -23|, &lt;0 1 9 9|]
Badness (Sintel): 1.29
Wedgie: &lt;&lt;2 18 18 24 23 -9||
Badness: 0.1650


==11-limit==
==== 13-limit ====
Commas: 50/49, 121/120, 896/891
Subgroup: 2.3.5.7.11.13


POTE generator: ~3/2 = 709.310
Comma list: 50/49, 65/64, 78/77, 121/120


Map: [&lt;2 0 -24 -23 -9|, &lt;0 1 9 9 5|]
Mapping: {{mapping| 2 0 4 5 5 8 | 0 5 1 1 3 -1 }}
EDOs: 22
 
Badness: 0.0709</pre></div>
Optimal tunings:  
<h4>Original HTML content:</h4>
* WE: ~7/5 = 600.7886{{c}}, ~5/4 = 380.2857{{c}} (~8/7 = 220.5028{{c}})
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Jubilismic clan&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:32:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:32 --&gt;&lt;!-- ws:start:WikiTextTocRule:33: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Diminished"&gt;Diminished&lt;/a&gt;&lt;/div&gt;
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.9119{{c}} (~8/7 = 220.0881{{c}})
&lt;!-- ws:end:WikiTextTocRule:33 --&gt;&lt;!-- ws:start:WikiTextTocRule:34: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Diminished-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
 
&lt;!-- ws:end:WikiTextTocRule:34 --&gt;&lt;!-- ws:start:WikiTextTocRule:35: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Diminished-Demolished"&gt;Demolished&lt;/a&gt;&lt;/div&gt;
{{Optimal ET sequence|legend=0| 6, 16, 22, 38f }}
&lt;!-- ws:end:WikiTextTocRule:35 --&gt;&lt;!-- ws:start:WikiTextTocRule:36: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Doublewide"&gt;Doublewide&lt;/a&gt;&lt;/div&gt;
 
&lt;!-- ws:end:WikiTextTocRule:36 --&gt;&lt;!-- ws:start:WikiTextTocRule:37: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Doublewide-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
Badness (Sintel): 1.42
&lt;!-- ws:end:WikiTextTocRule:37 --&gt;&lt;!-- ws:start:WikiTextTocRule:38: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Doublewide-Fleetwood"&gt;Fleetwood&lt;/a&gt;&lt;/div&gt;
 
&lt;!-- ws:end:WikiTextTocRule:38 --&gt;&lt;!-- ws:start:WikiTextTocRule:39: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Lemba"&gt;Lemba&lt;/a&gt;&lt;/div&gt;
; Music
&lt;!-- ws:end:WikiTextTocRule:39 --&gt;&lt;!-- ws:start:WikiTextTocRule:40: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Lemba-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
* [https://soundcloud.com/joelgranttaylor/astrology-percussion-quintet ''Astrology Percussion Quintet No 1'']{{dead link}} [http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/AstrologyPercQuintet1_c.mp3 play]{{dead link}} by [[Joel Taylor]]
&lt;!-- ws:end:WikiTextTocRule:40 --&gt;&lt;!-- ws:start:WikiTextTocRule:41: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Lemba-13-limit"&gt;13-limit&lt;/a&gt;&lt;/div&gt;
 
&lt;!-- ws:end:WikiTextTocRule:41 --&gt;&lt;!-- ws:start:WikiTextTocRule:42: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Vigintiduo"&gt;Vigintiduo&lt;/a&gt;&lt;/div&gt;
==== Horoscope ====
&lt;!-- ws:end:WikiTextTocRule:42 --&gt;&lt;!-- ws:start:WikiTextTocRule:43: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Duodecim"&gt;Duodecim&lt;/a&gt;&lt;/div&gt;
Subgroup: 2.3.5.7.11.13
&lt;!-- ws:end:WikiTextTocRule:43 --&gt;&lt;!-- ws:start:WikiTextTocRule:44: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Crepuscular"&gt;Crepuscular&lt;/a&gt;&lt;/div&gt;
 
&lt;!-- ws:end:WikiTextTocRule:44 --&gt;&lt;!-- ws:start:WikiTextTocRule:45: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Crepuscular-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
Comma list: 50/49, 66/65, 105/104, 121/120
&lt;!-- ws:end:WikiTextTocRule:45 --&gt;&lt;!-- ws:start:WikiTextTocRule:46: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Crepuscular-13-limit"&gt;13-limit&lt;/a&gt;&lt;/div&gt;
 
&lt;!-- ws:end:WikiTextTocRule:46 --&gt;&lt;!-- ws:start:WikiTextTocRule:47: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Bipyth"&gt;Bipyth&lt;/a&gt;&lt;/div&gt;
Mapping: {{mapping| 2 0 4 5 5 3 | 0 5 1 1 3 7 }}
&lt;!-- ws:end:WikiTextTocRule:47 --&gt;&lt;!-- ws:start:WikiTextTocRule:48: --&gt;&lt;div style="margin-left: 2em;"&gt;&lt;a href="#Bipyth-11-limit"&gt;11-limit&lt;/a&gt;&lt;/div&gt;
 
&lt;!-- ws:end:WikiTextTocRule:48 --&gt;&lt;!-- ws:start:WikiTextTocRule:49: --&gt;&lt;/div&gt;
Optimal tunings:  
&lt;!-- ws:end:WikiTextTocRule:49 --&gt;&lt;br /&gt;
* WE: ~7/5 = 599.8927{{c}}, ~5/4 = 379.7688{{c}} (~8/7 = 220.1239{{c}})
This tempers out the jubilisma, 50/49, which means 7/5 and 10/7 are identified and the octave is divided in two. Doublewide lemba and diminished are discussed below; others in the clan are pajara, decimal, injera, octokaidecal, hedgehog, bipelog and hexe, which are discussed elsewhere.&lt;br /&gt;
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.8117{{c}} (~8/7 = 220.1883{{c}})
&lt;br /&gt;
 
No-threes &lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 380.840&lt;br /&gt;
{{Optimal ET sequence|legend=0| 6f, 16, 22f, 38 }}
&lt;br /&gt;
 
No-threes map: [&amp;lt;2 0 1 1|, &amp;lt;0 0 1 1|]&lt;br /&gt;
Badness (Sintel): 1.46
EDOs: &lt;a class="wiki_link" href="/10edo"&gt;10&lt;/a&gt;, &lt;a class="wiki_link" href="/12edo"&gt;12&lt;/a&gt;, &lt;a class="wiki_link" href="/16edo"&gt;16&lt;/a&gt;, &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/104edo"&gt;104&lt;/a&gt;&lt;br /&gt;
 
&lt;br /&gt;
== Walid ==
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Diminished"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Diminished&lt;/h1&gt;
This low-accuracy extension tempers out 16/15, so the perfect fifth stands in for ~8/5 as in [[father]]. Its ploidacot is diploid monocot.
Commas: 36/35, 50/49&lt;br /&gt;
 
&lt;br /&gt;
[[Subgroup]]: 2.3.5.7
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~3/2 = 699.523&lt;br /&gt;
 
&lt;br /&gt;
[[Comma list]]: 16/15, 50/49
Map: [&amp;lt;4 0 3 5|, &amp;lt;0 1 1 1|]&lt;br /&gt;
 
EDOs: &lt;a class="wiki_link" href="/4edo"&gt;4&lt;/a&gt;, &lt;a class="wiki_link" href="/12edo"&gt;12&lt;/a&gt;&lt;br /&gt;
{{Mapping|legend=1| 2 0 8 9 | 0 1 -1 -1 }}
Badness: 0.0224&lt;br /&gt;
 
&lt;br /&gt;
: mapping generators: ~7/5, ~3
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="Diminished-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;11-limit&lt;/h2&gt;
 
Commas: 36/35, 50/49, 56/55&lt;br /&gt;
[[Optimal tuning]]s:  
&lt;br /&gt;
* [[WE]]: ~7/5 = 589.0384{{c}}, ~3/2 = 735.7242{{c}} (~15/14 = 146.6857{{c}})
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~3/2 = 709.109&lt;br /&gt;
: [[error map]]: {{val| -21.923 +11.846 +12.193 +18.719 }}
&lt;br /&gt;
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 750.4026{{c}} (~15/14 = 150.4026{{c}})
Map: [&amp;lt;4 0 3 5 14|, &amp;lt;0 1 1 1 0|]&lt;br /&gt;
: error map: {{val| 0.000 +48.448 +63.284 +80.771 }}
EDOs: &lt;a class="wiki_link" href="/4edo"&gt;4&lt;/a&gt;, &lt;a class="wiki_link" href="/8edo"&gt;8&lt;/a&gt;, &lt;a class="wiki_link" href="/12edo"&gt;12&lt;/a&gt;, &lt;a class="wiki_link" href="/44edo"&gt;44&lt;/a&gt;&lt;br /&gt;
 
Badness: 0.0221&lt;br /&gt;
{{Optimal ET sequence|legend=1| 2, 6, 8d }}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Diminished-Demolished"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Demolished&lt;/h2&gt;
[[Badness]] (Sintel): 1.24
Commas: 36/35, 45/44, 50/49&lt;br /&gt;
 
&lt;br /&gt;
=== 11-limit ===
POTE generator: ~3/2 = 689.881&lt;br /&gt;
Subgroup: 2.3.5.7.11
&lt;br /&gt;
 
Map: [&amp;lt;4 0 3 5 -5|, &amp;lt;0 1 1 1 3|]&lt;br /&gt;
Comma list: 16/15, 22/21, 50/49
EDOs: 12, 28, 40de&lt;br /&gt;
 
Badness: 0.0266&lt;br /&gt;
Mapping: {{mapping| 2 0 8 9 7 | 0 1 -1 -1 0 }}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Doublewide"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Doublewide&lt;/h1&gt;
Optimal tunings:  
Commas: 50/49, 875/864&lt;br /&gt;
* WE: ~7/5 = 589.7684{{c}}, ~3/2 = 736.9708{{c}} (~12/11 = 147.2023{{c}})
&lt;br /&gt;
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 750.5221{{c}} (~12/11 = 150.5221{{c}})
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~6/5 = 325.719&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=0| 2, 6, 8d }}
Map: [&amp;lt;2 1 3 4|, &amp;lt;0 4 3 3|]&lt;br /&gt;
 
EDOs: &lt;a class="wiki_link" href="/18edo"&gt;18&lt;/a&gt;, &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/26edo"&gt;26edo&lt;/a&gt;, &lt;a class="wiki_link" href="/48edo"&gt;48&lt;/a&gt;, &lt;a class="wiki_link" href="/70edo"&gt;70&lt;/a&gt;&lt;br /&gt;
Badness (Sintel): 0.965
Badness: 0.0435&lt;br /&gt;
 
&lt;br /&gt;
== Antikythera ==
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc4"&gt;&lt;a name="Doublewide-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;11-limit&lt;/h2&gt;
Named by [[Gene Ward Smith]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101481.html Yahoo! Tuning Group | ''Antikythera'']</ref>, antikythera is every other step of [[pajara]].
Commas: 50/49, 99/98, 875/864&lt;br /&gt;
 
&lt;br /&gt;
[[Subgroup]]: 2.9.5.7
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~6/5 = 325.548&lt;br /&gt;
 
&lt;br /&gt;
[[Comma list]]: 50/49, 64/63
Map: [&amp;lt;2 1 3 4 8|, &amp;lt;0 4 3 3 -2|]&lt;br /&gt;
 
EDOs: &lt;a class="wiki_link" href="/18edo"&gt;18&lt;/a&gt;, &lt;a class="wiki_link" href="/22edo"&gt;22&lt;/a&gt;, &lt;a class="wiki_link" href="/48edo"&gt;48&lt;/a&gt;, &lt;a class="wiki_link" href="/70edo"&gt;70&lt;/a&gt;, &lt;a class="wiki_link" href="/188edo"&gt;188&lt;/a&gt;&lt;br /&gt;
{{Mapping|legend=2| 2 0 11 12 | 0 1 -1 -1 }}
Badness: 0.0321&lt;br /&gt;
 
&lt;br /&gt;
: mapping generators: ~7/5, ~9
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc5"&gt;&lt;a name="Doublewide-Fleetwood"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Fleetwood&lt;/h2&gt;
 
Commas: 50/49, 55/54, 176/175&lt;br /&gt;
{{Mapping|legend=3| 2 3 5 6 | 0 1/2 -1 -1 }}
&lt;br /&gt;
 
POTE generator: ~6/5 = 327.038&lt;br /&gt;
: [[gencom]]: [7/5 8/7; 50/49 64/63]
&lt;br /&gt;
 
Map: [&amp;lt;2 1 3 4 2|, &amp;lt;0 4 3 3 9|]&lt;br /&gt;
[[Optimal tuning]]s:  
EDOs: 22, 26e&lt;br /&gt;
* [[WE]]: ~7/5 = 598.8483{{c}}, ~9/8 = 213.6844{{c}}
Badness: 0.0352&lt;br /&gt;
: [[error map]]: {{val| -2.303 +2.864 -5.756 +10.580 }}
&lt;br /&gt;
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~9/8 = 214.6875{{c}}
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Lemba"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Lemba&lt;/h1&gt;
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}
Commas: 50/49, 525/512&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 28 }}
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: ~8/7 = 232.089&lt;br /&gt;
 
&lt;br /&gt;
[[Badness]] (Sintel): 0.253
Map: [&amp;lt;2 2 5 6|, &amp;lt;0 3 -1 -1|]&lt;br /&gt;
 
EDOs: &lt;a class="wiki_link" href="/10edo"&gt;10&lt;/a&gt;, &lt;a class="wiki_link" href="/16edo"&gt;16&lt;/a&gt;, &lt;a class="wiki_link" href="/26edo"&gt;26&lt;/a&gt;, &lt;a class="wiki_link" href="/62edo"&gt;62&lt;/a&gt;&lt;br /&gt;
== Doublewide ==
Badness: 0.0622&lt;br /&gt;
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Doublewide (5-limit)]].''
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:14:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc7"&gt;&lt;a name="Lemba-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:14 --&gt;11-limit&lt;/h2&gt;
Doublewide is generated by a sharply tuned ~6/5 minor third, four of which and a semi-octave period give the 3rd harmonic. It may be described as the {{nowrap| 22 & 26 }} temperament; its ploidacot is diploid alpha-tetracot. An 11-limit extension is immediately available by identifying two generator steps as ~16/11. [[48edo]] makes for an excellent tuning.
Commas: 45/44, 50/49, 385/384&lt;br /&gt;
 
&lt;br /&gt;
[[Subgroup]]: 2.3.5.7
POTE generator: ~8/7 = 230.974&lt;br /&gt;
 
&lt;br /&gt;
[[Comma list]]: 50/49, 875/864
Map: [&amp;lt;2 2 5 6 5|, &amp;lt;0 3 -1 -1 5|]&lt;br /&gt;
 
EDOs: 10, 16, 26&lt;br /&gt;
{{Mapping|legend=1| 2 1 3 4 | 0 4 3 3 }}
Badness: 0.0416&lt;br /&gt;
 
&lt;br /&gt;
: mapping generators: ~7/5, ~6/5
&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc8"&gt;&lt;a name="Lemba-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;13-limit&lt;/h2&gt;
 
Commas: 45/44, 50/49, 65/64, 78/77&lt;br /&gt;
[[Optimal tuning]]s:
&lt;br /&gt;
* [[WE]]: ~7/5 = 600.0365{{c}}, ~6/5 = 325.7389{{c}} (~7/6 = 274.2975{{c}})
POTE generator: ~8/7 = 230.966&lt;br /&gt;
: [[error map]]: {{val| -2.303 +2.864 -5.756 +10.580 }}
&lt;br /&gt;
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~6/5 = 325.7353{{c}} (~7/6 = 274.2647{{c}})
Map: [&amp;lt;2 2 5 6 5 7|, &amp;lt;0 3 -1 -1 5 1|]&lt;br /&gt;
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}
EDOs: 10, 16, 26&lt;br /&gt;
 
Badness: 0.0255&lt;br /&gt;
{{Optimal ET sequence|legend=1| 4, 14bd, 18, 22, 48 }}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc9"&gt;&lt;a name="Vigintiduo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Vigintiduo&lt;/h1&gt;
[[Badness]] (Sintel): 1.10
Commas: 50/49, 64/63, 245/243&lt;br /&gt;
 
&lt;br /&gt;
=== 11-limit ===
POTE generator: ~11/8 = 557.563&lt;br /&gt;
Subgroup: 2.3.5.7.11
&lt;br /&gt;
 
Map: [&amp;lt;22 35 51 62 0|, &amp;lt;0 0 0 0 1|]&lt;br /&gt;
Comma list: 50/49, 99/98, 385/384
EDOs: 22, 66de, 88bde, 110bd, 198bcdde&lt;br /&gt;
 
Badness: 0.0484&lt;br /&gt;
Mapping: {{mapping| 2 1 3 4 8 | 0 4 3 3 -2 }}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:20:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc10"&gt;&lt;a name="Duodecim"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:20 --&gt;Duodecim&lt;/h1&gt;
Optimal tunings:  
Commas: 36/35, 50/49, 64/63&lt;br /&gt;
* WE: ~7/5 = 600.1818{{c}}, ~6/5 = 325.6434{{c}} (~7/6 = 274.5384{{c}})
&lt;br /&gt;
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 325.5854{{c}} (~7/6 = 274.4146{{c}})
POTE generator: ~11/8 = 565.023&lt;br /&gt;
 
&lt;br /&gt;
{{Optimal ET sequence|legend=0| 4, 18, 22, 48 }}
Map: [&amp;lt;12 19 28 34 0|, &amp;lt;0 0 0 0 1|]&lt;br /&gt;
 
EDOs: 12, 24d, 36d&lt;br /&gt;
Badness (Sintel): 1.06
Badness: 30.536&lt;br /&gt;
 
&lt;br /&gt;
=== Fleetwood ===
&lt;!-- ws:start:WikiTextHeadingRule:22:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc11"&gt;&lt;a name="Crepuscular"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:22 --&gt;Crepuscular&lt;/h1&gt;
Subgroup: 2.3.5.7.11
Commas: 50/49, 4375/4374&lt;br /&gt;
 
&lt;br /&gt;
Comma list: 50/49, 55/54, 176/175
POTE generator: ~27/25 = 140.349&lt;br /&gt;
 
&lt;br /&gt;
Mapping: {{mapping| 2 1 3 4 2 | 0 4 3 3 9 }}
Map: [&amp;lt;2 2 3 4|, &amp;lt;0 5 7 7|]&lt;br /&gt;
 
Wedgie: &amp;lt;&amp;lt;10 14 14 -1 -6 -7||&lt;br /&gt;
Optimal tunings:  
EDOs: 26, 34d, 60d, 94d&lt;br /&gt;
* WE: ~7/5 = 599.6049{{c}}, ~6/5 = 326.8229{{c}} (~7/6 = 272.7819{{c}})
Badness: 0.0867&lt;br /&gt;
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 326.8890{{c}} (~7/6 = 273.1110{{c}})
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:24:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc12"&gt;&lt;a name="Crepuscular-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:24 --&gt;11-limit&lt;/h2&gt;
{{Optimal ET sequence|legend=0| 4e, …, 18e, 22 }}
Commas: 50/49, 99/98, 1944/1925&lt;br /&gt;
 
&lt;br /&gt;
Badness (Sintel): 1.16
POTE generator: ~12/11 = 140.587&lt;br /&gt;
 
&lt;br /&gt;
==== 13-limit ====
Map: [&amp;lt;2 2 3 4 6|, &amp;lt;0 5 7 7 4|]&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
EDOs: 26, 34d, 60d, 94de&lt;br /&gt;
 
Badness: 0.0408&lt;br /&gt;
Comma list: 50/49, 55/54, 65/63, 176/175
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:26:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc13"&gt;&lt;a name="Crepuscular-13-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:26 --&gt;13-limit&lt;/h2&gt;
Mapping: {{mapping| 2 1 3 4 2 3 | 0 4 3 3 9 8 }}
Commas: 50/49, 78/77, 99/98, 144/143&lt;br /&gt;
 
&lt;br /&gt;
Optimal tunings:
POTE generator: ~12/11 = 140.554&lt;br /&gt;
* WE: ~7/5 = 599.5482{{c}}, ~6/5 = 327.5939{{c}} (~7/6 = 271.9543{{c}})
&lt;br /&gt;
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 327.6706{{c}} (~7/6 = 272.3294{{c}})
Map: [&amp;lt;2 2 3 4 6 6|, &amp;lt;0 5 7 7 4 6|]&lt;br /&gt;
 
EDOs: 26, 34d, 60d, 94de&lt;br /&gt;
{{Optimal ET sequence|legend=0| 4ef, …, 18e, 22 }}
Badness: 0.0244&lt;br /&gt;
 
&lt;br /&gt;
Badness (Sintel): 1.32
&lt;!-- ws:start:WikiTextHeadingRule:28:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc14"&gt;&lt;a name="Bipyth"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:28 --&gt;Bipyth&lt;/h1&gt;
 
Commas: 50/49, 20480/19683&lt;br /&gt;
=== Cavalier ===
&lt;br /&gt;
Subgroup: 2.3.5.7.11
POTE generator: ~3/2 = 709.437&lt;br /&gt;
 
&lt;br /&gt;
Comma list: 45/44, 50/49, 875/864
Map: [&amp;lt;2 0 -24 -23|, &amp;lt;0 1 9 9|]&lt;br /&gt;
 
Wedgie: &amp;lt;&amp;lt;2 18 18 24 23 -9||&lt;br /&gt;
Mapping: {{mapping| 2 1 3 4 1 | 0 4 3 3 11 }}
Badness: 0.1650&lt;br /&gt;
 
&lt;br /&gt;
Optimal tunings:
&lt;!-- ws:start:WikiTextHeadingRule:30:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc15"&gt;&lt;a name="Bipyth-11-limit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:30 --&gt;11-limit&lt;/h2&gt;
* WE: ~7/5 = 600.9467{{c}}, ~6/5 = 323.9369{{c}} (~7/6 = 277.0098{{c}})
Commas: 50/49, 121/120, 896/891&lt;br /&gt;
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.7272{{c}} (~7/6 = 276.2728{{c}})
&lt;br /&gt;
 
POTE generator: ~3/2 = 709.310&lt;br /&gt;
{{Optimal ET sequence|legend=0| 4e, 22e, 26 }}
&lt;br /&gt;
 
Map: [&amp;lt;2 0 -24 -23 -9|, &amp;lt;0 1 9 9 5|]&lt;br /&gt;
Badness (Sintel): 1.75
EDOs: 22&lt;br /&gt;
 
Badness: 0.0709&lt;/body&gt;&lt;/html&gt;</pre></div>
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 45/44, 50/49, 78/77, 325/324
 
Mapping: {{mapping| 2 1 3 4 1 2 | 0 4 3 3 11 10 }}
 
Optimal tunings:
* WE: ~7/5 = 600.9537{{c}}, ~6/5 = 323.9097{{c}} (~7/6 = 277.0440{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.6876{{c}} (~7/6 = 276.3124{{c}})
 
{{Optimal ET sequence|legend=0| 4ef, 22ef, 26 }}
 
Badness (Sintel): 1.45
 
== Elvis ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Elvis]].''
 
Elvis is generated by a ptolemaic diminished fifth, tuned sharp such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. [[26edo]] makes for an obvious tuning.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 8505/8192
 
{{Mapping|legend=1| 2 1 10 11 | 0 2 -5 -5 }}
 
: mapping generators: ~7/5, ~64/45
 
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 601.6846{{c}}, ~64/45 = 648.0937{{c}} (~64/63 = 46.4091{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~64/45 = 646.0539{{c}} (~64/63 = 46.0539{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
 
{{Optimal ET sequence|legend=1| 2, 24c, 26 }}
 
[[Badness]] (Sintel): 3.58
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 45/44, 50/49, 1344/1331
 
Mapping: {{mapping| 2 1 10 11 8 | 0 2 -5 -5 -1 }}
 
Optimal tunings:
* WE: ~7/5 = 601.2186{{c}}, ~16/11 = 647.4300{{c}} (~56/55 = 46.2114{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9681{{c}} (~56/55 = 45.9681{{c}})
 
{{Optimal ET sequence|legend=0| 2, 24c, 26 }}
 
Badness (Sintel): 2.09
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 45/44, 50/49, 78/77, 1053/1024
 
Mapping: {{mapping| 2 1 10 11 8 16 | 0 2 -5 -5 -1 -8 }}
 
Optimal tunings:  
* WE: ~7/5 = 601.2206{{c}}, ~16/11 = 647.4219{{c}} (~56/55 = 46.2013{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9362{{c}} (~56/55 = 45.9362{{c}})
 
{{Optimal ET sequence|legend=0| 2f, 24cf, 26 }}
 
Badness (Sintel): 1.82
 
== Comic ==
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Comic (5-limit)]].''
 
Comic is generated by a grave fifth, tuned flat such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. [[22edo]] makes for an obvious tuning.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 2240/2187
 
{{Mapping|legend=1| 2 1 -3 -2 | 0 2 7 7 }}
 
: mapping generators: ~7/5, ~40/27
 
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.9554{{c}}, ~40/27 = 653.5596{{c}} (~28/27 = 54.6042{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~40/27 = 654.3329{{c}} (~28/27 = 54.3329{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
 
{{Optimal ET sequence|legend=1| 2cd, …, 20cd, 22 }}
 
[[Badness]] (Sintel): 2.14
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 99/98, 2662/2625
 
Mapping: {{mapping| 2 1 -3 -2 -4 | 0 2 7 7 10 }}
 
Optimal tunings:
* WE: ~7/5 = 598.8161{{c}}, ~22/15 = 653.8909{{c}} (~28/27 = 55.0747{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.7898{{c}} (~28/27 = 54.7898{{c}})
 
{{Optimal ET sequence|legend=0| 2cde, …, 20cde, 22 }}
 
Badness (Sintel): 1.49
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 50/49, 65/63, 99/98, 968/945
 
Mapping: {{mapping| 2 1 -3 -2 -4 3 | 0 2 7 7 10 4 }}
 
Optimal tunings:
* WE: ~7/5 = 600.1030{{c}}, ~22/15 = 654.5470{{c}} (~28/27 = 54.4440{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.4665{{c}} (~28/27 = 54.4665{{c}})
 
{{Optimal ET sequence|legend=0| 2cde, 20cde, 22 }}
 
Badness (Sintel): 1.71
 
== Bipyth ==
Bipyth tempers out the 5-limit [[superpyth comma]], 20480/19683, making it an alternative extension of 5-limit [[superpyth]]. Its ploidacot is diploid monocot.  
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 20480/19683
 
{{Mapping|legend=1| 2 0 -24 -23 | 0 1 9 9 }}
 
: mapping generators: ~7/5, ~3
 
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.7533{{c}}, ~3/2 = 707.9630{{c}} (~15/14 = 109.2098{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1579{{c}} (~15/14 = 109.1579{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}
 
{{Optimal ET sequence|legend=1| 10cd, 12cd, 22 }}
 
[[Badness]] (Sintel): 4.18
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 121/120, 896/891
 
Mapping: {{mapping| 2 0 -24 -23 -9 | 0 1 9 9 5 }}
 
Optimal tunings:
* WE: ~7/5 = 599.2296{{c}}, ~3/2 = 708.3992{{c}} (~15/14 = 109.1697{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1395{{c}} (~15/14 = 109.1395{{c}})
 
{{Optimal ET sequence|legend=0| 10cd, 12cde, 22 }}
 
Badness (Sintel): 2.34
 
== Sedecic ==
Sedecic has 1/16-octave period and may be thought of as 16edo with an independent generator for prime 3. Its ploidacot is 16-ploid monocot.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 546875/524288
 
{{Mapping|legend=1| 16 0 37 45 | 0 1 0 0 }}
 
[[Optimal tuning]]s:
* [[WE]]: ~128/125 = 75.0539{{c}}, ~3/2 = 701.0578{{c}} (~525/512 = 25.5726{{c}})
: [[error map]]: {{val| 0.000 0.000 -11.314 +6.174 }}
* [[CWE]]: ~128/125 = 75.0000{{c}}, ~3/2 = 700.8957{{c}} (~525/512 = 25.8957{{c}})
: error map: {{val| 0.000 -1.401 -11.314 +6.174 }}
 
{{Optimal ET sequence|legend=1| 16, 32, 48 }}
 
[[Badness]] (Sintel): 6.73
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 385/384, 1331/1323
 
Mapping: {{mapping| 16 0 37 45 30 | 0 1 0 0 1 }}
 
Optimal tunings:  
* WE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.7810{{c}} (~45/44 = 25.3476{{c}})
* CWE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.6780{{c}} (~45/44 = 25.6780{{c}})
 
{{Optimal ET sequence|legend=0| 16, 32, 48 }}
 
Badness (Sintel): 3.07
 
== Notes ==
 
[[Category:Temperament clans]]
[[Category:Pages with mostly numerical content]]
[[Category:Jubilismic clan| ]] <!-- main article -->
[[Category:Jubilismic| ]] <!-- key article -->
[[Category:Rank 2]]

Latest revision as of 12:38, 21 August 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The jubilismic clan tempers out the jubilisma, 50/49, which means 7/5 and 10/7 are both equated to the 600-cent tritone and the octave is divided in two.

Jubilic

The head of this clan, jubilic, is generated by ~5/4. That and a semioctave give ~7/4. As such, a reasonable tuning would tune the 5/4 flat and 7/4 sharp.

Subgroup: 2.5.7

Comma list: 50/49

Sval mapping[2 0 1], 0 1 1]]

sval mapping generators: ~7/5, ~5

Gencom mapping[2 0 0 1], 0 0 1 1]]

Optimal tunings:

  • WE: ~7/5 = 599.6673 ¢, ~5/4 = 380.6287 ¢ (~8/7 = 219.0386 ¢)
error map: -0.665 -7.016 +10.139]
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 380.0086 ¢ (~8/7 = 219.9914 ¢)
error map: 0.000 -6.305 +11.183]

Optimal ET sequence2, 4, 6, 16, 22, 60d

Badness (Sintel): 0.140

Overview to extensions

Lemba finds the perfect fifth three steps away by tempering out 1029/1024. Astrology, five steps away by tempering out 3125/3072. Decimal, two steps away by tempering out 25/24 and 49/48. Walid merges ~5/4 and ~4/3 by tempering out 16/15.

Diminished adds 36/35 and splits the ~7/5 period in a further two. Pajara adds 64/63 and slices the ~7/4 in two, with antikythera being every other step thereof. Dubbla adds 78125/73728 and slices the ~5/4 in two. Injera adds 81/80 and slices the ~5/1 in four. Octokaidecal adds 28/27. Bipelog adds 135/128. Those splits the generator into three in various ways. Hexe adds 128/125 and slices the period in three. Hedgehog adds 250/243. Elvis adds 8505/8192. Those slice the generator in five. Comic adds 2240/2187. Crepuscular adds 4375/4374. Those slice the generator in seven. Byhearted adds 19683/19208. Bipyth adds 20480/19683. Those slice the generator in nine.

Temperaments discussed elsewhere are:

Considered below are lemba, astrology, walid, antikythera, doublewide, elvis, comic, and bipyth.

Lemba

For the 5-limit version, see Miscellaneous 5-limit temperaments #Lemba.

Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth. It may be described as the 10 & 16 temperament; its ploidacot is diploid tricot.

Subgroup: 2.3.5.7

Comma list: 50/49, 525/512

Mapping[2 2 5 6], 0 3 -1 -1]]

mapping generators: ~7/5, ~8/7

Optimal tunings:

  • WE: ~7/5 = 601.4623 ¢, ~8/7 = 232.6544 ¢
error map: +2.925 -1.067 -11.656 +7.294]
  • CWE: ~7/5 = 600.0000 ¢, ~8/7 = 232.2655 ¢
error map: 0.000 -5.158 -18.579 -1.091]

Optimal ET sequence10, 16, 26, 36c, 62c

Badness (Sintel): 1.57

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 385/384

Mapping: [2 2 5 6 5], 0 3 -1 -1 5]]

Optimal tunings:

  • WE: ~7/5 = 601.1769 ¢, ~8/7 = 231.4273 ¢
  • CWE: ~7/5 = 600.0000 ¢, ~8/7 = 231.1781 ¢

Optimal ET sequence: 10, 16, 26

Badness (Sintel): 1.37

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 65/64, 78/77

Mapping: [2 2 5 6 5 7], 0 3 -1 -1 5 1]]

Optimal tunings:

  • WE: ~7/5 = 601.1939 ¢, ~8/7 = 231.4261 ¢
  • CWE: ~7/5 = 600.0000 ¢, ~8/7 = 231.1617 ¢

Optimal ET sequence: 10, 16, 26

Badness (Sintel): 1.05

Astrology

Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3. It may be described as the 16 & 22 temperament; its ploidacot is diploid pentacot.

Subgroup: 2.3.5.7

Comma list: 50/49, 3125/3072

Mapping[2 0 4 5], 0 5 1 1]]

mapping geenerators: ~7/5, ~5/4

Optimal tunings:

  • WE: ~7/5 = 599.6999 ¢, ~5/4 = 380.3881 ¢ (~8/7 = 219.3119 ¢)
error map: -0.600 -0.015 -7.126 +10.062]
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 380.5123 ¢ (~8/7 = 219.4877 ¢)
error map: 0.000 +0.606 -5.801 +11.686]

Optimal ET sequence6, 16, 22, 60d

Badness (Sintel): 2.09

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 121/120, 176/175

Mapping: [2 0 4 5 5], 0 5 1 1 3]]

Optimal tunings:

  • WE: ~7/5 = 600.0538 ¢, ~5/4 = 380.5640 ¢ (~8/7 = 219.4897 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 380.5419 ¢ (~8/7 = 219.4581 ¢)

Optimal ET sequence: 6, 16, 22

Badness (Sintel): 1.29

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 65/64, 78/77, 121/120

Mapping: [2 0 4 5 5 8], 0 5 1 1 3 -1]]

Optimal tunings:

  • WE: ~7/5 = 600.7886 ¢, ~5/4 = 380.2857 ¢ (~8/7 = 220.5028 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 379.9119 ¢ (~8/7 = 220.0881 ¢)

Optimal ET sequence: 6, 16, 22, 38f

Badness (Sintel): 1.42

Music

Horoscope

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 66/65, 105/104, 121/120

Mapping: [2 0 4 5 5 3], 0 5 1 1 3 7]]

Optimal tunings:

  • WE: ~7/5 = 599.8927 ¢, ~5/4 = 379.7688 ¢ (~8/7 = 220.1239 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 379.8117 ¢ (~8/7 = 220.1883 ¢)

Optimal ET sequence: 6f, 16, 22f, 38

Badness (Sintel): 1.46

Walid

This low-accuracy extension tempers out 16/15, so the perfect fifth stands in for ~8/5 as in father. Its ploidacot is diploid monocot.

Subgroup: 2.3.5.7

Comma list: 16/15, 50/49

Mapping[2 0 8 9], 0 1 -1 -1]]

mapping generators: ~7/5, ~3

Optimal tunings:

  • WE: ~7/5 = 589.0384 ¢, ~3/2 = 735.7242 ¢ (~15/14 = 146.6857 ¢)
error map: -21.923 +11.846 +12.193 +18.719]
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 750.4026 ¢ (~15/14 = 150.4026 ¢)
error map: 0.000 +48.448 +63.284 +80.771]

Optimal ET sequence2, 6, 8d

Badness (Sintel): 1.24

11-limit

Subgroup: 2.3.5.7.11

Comma list: 16/15, 22/21, 50/49

Mapping: [2 0 8 9 7], 0 1 -1 -1 0]]

Optimal tunings:

  • WE: ~7/5 = 589.7684 ¢, ~3/2 = 736.9708 ¢ (~12/11 = 147.2023 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 750.5221 ¢ (~12/11 = 150.5221 ¢)

Optimal ET sequence: 2, 6, 8d

Badness (Sintel): 0.965

Antikythera

Named by Gene Ward Smith in 2011[1], antikythera is every other step of pajara.

Subgroup: 2.9.5.7

Comma list: 50/49, 64/63

Sval mapping[2 0 11 12], 0 1 -1 -1]]

mapping generators: ~7/5, ~9

Gencom mapping[2 3 5 6], 0 1/2 -1 -1]]

gencom: [7/5 8/7; 50/49 64/63]

Optimal tunings:

  • WE: ~7/5 = 598.8483 ¢, ~9/8 = 213.6844 ¢
error map: -2.303 +2.864 -5.756 +10.580]
  • CWE: ~7/5 = 600.0000 ¢, ~9/8 = 214.6875 ¢
error map: 0.000 +10.778 -1.001 +16.487]

Optimal ET sequence2, 4, 6, 16, 22, 28

Badness (Sintel): 0.253

Doublewide

For the 5-limit version, see Superpyth–22 equivalence continuum #Doublewide (5-limit).

Doublewide is generated by a sharply tuned ~6/5 minor third, four of which and a semi-octave period give the 3rd harmonic. It may be described as the 22 & 26 temperament; its ploidacot is diploid alpha-tetracot. An 11-limit extension is immediately available by identifying two generator steps as ~16/11. 48edo makes for an excellent tuning.

Subgroup: 2.3.5.7

Comma list: 50/49, 875/864

Mapping[2 1 3 4], 0 4 3 3]]

mapping generators: ~7/5, ~6/5

Optimal tunings:

  • WE: ~7/5 = 600.0365 ¢, ~6/5 = 325.7389 ¢ (~7/6 = 274.2975 ¢)
error map: -2.303 +2.864 -5.756 +10.580]
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 325.7353 ¢ (~7/6 = 274.2647 ¢)
error map: 0.000 +10.778 -1.001 +16.487]

Optimal ET sequence4, 14bd, 18, 22, 48

Badness (Sintel): 1.10

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 385/384

Mapping: [2 1 3 4 8], 0 4 3 3 -2]]

Optimal tunings:

  • WE: ~7/5 = 600.1818 ¢, ~6/5 = 325.6434 ¢ (~7/6 = 274.5384 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 325.5854 ¢ (~7/6 = 274.4146 ¢)

Optimal ET sequence: 4, 18, 22, 48

Badness (Sintel): 1.06

Fleetwood

Subgroup: 2.3.5.7.11

Comma list: 50/49, 55/54, 176/175

Mapping: [2 1 3 4 2], 0 4 3 3 9]]

Optimal tunings:

  • WE: ~7/5 = 599.6049 ¢, ~6/5 = 326.8229 ¢ (~7/6 = 272.7819 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 326.8890 ¢ (~7/6 = 273.1110 ¢)

Optimal ET sequence: 4e, …, 18e, 22

Badness (Sintel): 1.16

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 55/54, 65/63, 176/175

Mapping: [2 1 3 4 2 3], 0 4 3 3 9 8]]

Optimal tunings:

  • WE: ~7/5 = 599.5482 ¢, ~6/5 = 327.5939 ¢ (~7/6 = 271.9543 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 327.6706 ¢ (~7/6 = 272.3294 ¢)

Optimal ET sequence: 4ef, …, 18e, 22

Badness (Sintel): 1.32

Cavalier

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 875/864

Mapping: [2 1 3 4 1], 0 4 3 3 11]]

Optimal tunings:

  • WE: ~7/5 = 600.9467 ¢, ~6/5 = 323.9369 ¢ (~7/6 = 277.0098 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 323.7272 ¢ (~7/6 = 276.2728 ¢)

Optimal ET sequence: 4e, 22e, 26

Badness (Sintel): 1.75

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 78/77, 325/324

Mapping: [2 1 3 4 1 2], 0 4 3 3 11 10]]

Optimal tunings:

  • WE: ~7/5 = 600.9537 ¢, ~6/5 = 323.9097 ¢ (~7/6 = 277.0440 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 323.6876 ¢ (~7/6 = 276.3124 ¢)

Optimal ET sequence: 4ef, 22ef, 26

Badness (Sintel): 1.45

Elvis

For the 5-limit version, see Miscellaneous 5-limit temperaments #Elvis.

Elvis is generated by a ptolemaic diminished fifth, tuned sharp such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. 26edo makes for an obvious tuning.

Subgroup: 2.3.5.7

Comma list: 50/49, 8505/8192

Mapping[2 1 10 11], 0 2 -5 -5]]

mapping generators: ~7/5, ~64/45

Optimal tunings:

  • WE: ~7/5 = 601.6846 ¢, ~64/45 = 648.0937 ¢ (~64/63 = 46.4091 ¢)
error map: +3.369 -4.083 -9.936 +9.236]
  • CWE: ~7/5 = 600.0000 ¢, ~64/45 = 646.0539 ¢ (~64/63 = 46.0539 ¢)
error map: 0.000 -9.847 -16.583 +0.904]

Optimal ET sequence2, 24c, 26

Badness (Sintel): 3.58

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 1344/1331

Mapping: [2 1 10 11 8], 0 2 -5 -5 -1]]

Optimal tunings:

  • WE: ~7/5 = 601.2186 ¢, ~16/11 = 647.4300 ¢ (~56/55 = 46.2114 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~16/11 = 645.9681 ¢ (~56/55 = 45.9681 ¢)

Optimal ET sequence: 2, 24c, 26

Badness (Sintel): 2.09

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 78/77, 1053/1024

Mapping: [2 1 10 11 8 16], 0 2 -5 -5 -1 -8]]

Optimal tunings:

  • WE: ~7/5 = 601.2206 ¢, ~16/11 = 647.4219 ¢ (~56/55 = 46.2013 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~16/11 = 645.9362 ¢ (~56/55 = 45.9362 ¢)

Optimal ET sequence: 2f, 24cf, 26

Badness (Sintel): 1.82

Comic

For the 5-limit version, see Superpyth–22 equivalence continuum #Comic (5-limit).

Comic is generated by a grave fifth, tuned flat such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. 22edo makes for an obvious tuning.

Subgroup: 2.3.5.7

Comma list: 50/49, 2240/2187

Mapping[2 1 -3 -2], 0 2 7 7]]

mapping generators: ~7/5, ~40/27

Optimal tunings:

  • WE: ~7/5 = 598.9554 ¢, ~40/27 = 653.5596 ¢ (~28/27 = 54.6042 ¢)
error map: +3.369 -4.083 -9.936 +9.236]
  • CWE: ~7/5 = 600.0000 ¢, ~40/27 = 654.3329 ¢ (~28/27 = 54.3329 ¢)
error map: 0.000 -9.847 -16.583 +0.904]

Optimal ET sequence2cd, …, 20cd, 22

Badness (Sintel): 2.14

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 2662/2625

Mapping: [2 1 -3 -2 -4], 0 2 7 7 10]]

Optimal tunings:

  • WE: ~7/5 = 598.8161 ¢, ~22/15 = 653.8909 ¢ (~28/27 = 55.0747 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~22/15 = 654.7898 ¢ (~28/27 = 54.7898 ¢)

Optimal ET sequence: 2cde, …, 20cde, 22

Badness (Sintel): 1.49

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 65/63, 99/98, 968/945

Mapping: [2 1 -3 -2 -4 3], 0 2 7 7 10 4]]

Optimal tunings:

  • WE: ~7/5 = 600.1030 ¢, ~22/15 = 654.5470 ¢ (~28/27 = 54.4440 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~22/15 = 654.4665 ¢ (~28/27 = 54.4665 ¢)

Optimal ET sequence: 2cde, 20cde, 22

Badness (Sintel): 1.71

Bipyth

Bipyth tempers out the 5-limit superpyth comma, 20480/19683, making it an alternative extension of 5-limit superpyth. Its ploidacot is diploid monocot.

Subgroup: 2.3.5.7

Comma list: 50/49, 20480/19683

Mapping[2 0 -24 -23], 0 1 9 9]]

mapping generators: ~7/5, ~3

Optimal tunings:

  • WE: ~7/5 = 598.7533 ¢, ~3/2 = 707.9630 ¢ (~15/14 = 109.2098 ¢)
error map: +3.369 -4.083 -9.936 +9.236]
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 709.1579 ¢ (~15/14 = 109.1579 ¢)
error map: 0.000 -9.847 -16.583 +0.904]

Optimal ET sequence10cd, 12cd, 22

Badness (Sintel): 4.18

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 121/120, 896/891

Mapping: [2 0 -24 -23 -9], 0 1 9 9 5]]

Optimal tunings:

  • WE: ~7/5 = 599.2296 ¢, ~3/2 = 708.3992 ¢ (~15/14 = 109.1697 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 709.1395 ¢ (~15/14 = 109.1395 ¢)

Optimal ET sequence: 10cd, 12cde, 22

Badness (Sintel): 2.34

Sedecic

Sedecic has 1/16-octave period and may be thought of as 16edo with an independent generator for prime 3. Its ploidacot is 16-ploid monocot.

Subgroup: 2.3.5.7

Comma list: 50/49, 546875/524288

Mapping[16 0 37 45], 0 1 0 0]]

Optimal tunings:

  • WE: ~128/125 = 75.0539 ¢, ~3/2 = 701.0578 ¢ (~525/512 = 25.5726 ¢)
error map: 0.000 0.000 -11.314 +6.174]
  • CWE: ~128/125 = 75.0000 ¢, ~3/2 = 700.8957 ¢ (~525/512 = 25.8957 ¢)
error map: 0.000 -1.401 -11.314 +6.174]

Optimal ET sequence16, 32, 48

Badness (Sintel): 6.73

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 385/384, 1331/1323

Mapping: [16 0 37 45 30], 0 1 0 0 1]]

Optimal tunings:

  • WE: ~22/21 = 75.0000 ¢, ~3/2 = 700.7810 ¢ (~45/44 = 25.3476 ¢)
  • CWE: ~22/21 = 75.0000 ¢, ~3/2 = 700.6780 ¢ (~45/44 = 25.6780 ¢)

Optimal ET sequence: 16, 32, 48

Badness (Sintel): 3.07

Notes