25edf: Difference between revisions
Jump to navigation
Jump to search
m add todo:expand, add harmonics, make table collapsible |
m Removing from Category:Edonoi using Cat-a-lot |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} It corresponds to 42.7378 [[edo]] (similar to every fourth step of [[171edo]]). | |||
It is related to the regular temperament which tempers out 703125/702464 and 5250987/5242880 in the 7-limit, which is supported by [[43edo]], [[128edo]], [[171edo]], [[214edo]], [[299edo]], and [[385edo]]. | It is related to the regular temperament which tempers out 703125/702464 and 5250987/5242880 in the 7-limit, which is supported by [[43edo]], [[128edo]], [[171edo]], [[214edo]], [[299edo]], and [[385edo]]. | ||
Line 6: | Line 6: | ||
Lookalikes: [[43edo]], [[68edt]] | Lookalikes: [[43edo]], [[68edt]] | ||
==Harmonics== | == Harmonics == | ||
{{Harmonics in equal|25|3|2|intervals=prime}} | {{Harmonics in equal|25|3|2|intervals=prime}} | ||
{{Harmonics in equal| | {{Harmonics in equal|25|3|2|start=12|collapsed=1|intervals=prime}} | ||
==Intervals== | == Intervals == | ||
{| class="wikitable mw-collapsible" | {| class="wikitable mw-collapsible" | ||
|+ Intervals of 25edf | |+ style="font-size: 105%;" | Intervals of 25edf | ||
|- | |- | ||
! | ! Degree | ||
! | ! Cents | ||
! | ! Corresponding<br />JI intervals | ||
! | ! Comments | ||
|- | |- | ||
| | | colspan="2" | 0 | ||
| '''exact [[1/1]]''' | |||
| | |||
|- | |- | ||
| 1 | |||
| 28.0782 | |||
| 51/50 | |||
| | |||
|- | |- | ||
| 2 | |||
| 56.1564 | |||
| 26/25 | |||
| | |||
|- | |- | ||
| 3 | |||
| 84.2346 | |||
| [[21/20]] | |||
| | |||
|- | |- | ||
| 4 | |||
| 112.3128 | |||
| [[16/15]] | |||
| | |||
|- | |- | ||
| 5 | |||
| 140.391 | |||
| 13/12 | |||
| | |||
|- | |- | ||
| 6 | |||
| 168.4692 | |||
| | |||
| | |||
|- | |- | ||
| 7 | |||
| 196.5474 | |||
| [[28/25]] | |||
| | |||
|- | |- | ||
| 8 | |||
| 224.6256 | |||
| 8/7 | |||
| | |||
|- | |- | ||
| 9 | |||
| 252.7038 | |||
| | |||
| | |||
|- | |- | ||
| 10 | |||
| 280.782 | |||
| [[20/17]] | |||
| | |||
|- | |- | ||
| 11 | |||
| 308.8602 | |||
| | |||
| pseudo-[[6/5]] | |||
|- | |- | ||
| 12 | |||
| 336.9384 | |||
| | |||
| | |||
|- | |- | ||
| 13 | |||
| 365.0166 | |||
| | |||
| | |||
|- | |- | ||
| 14 | |||
| 393.0948 | |||
| | |||
| pseudo-[[5/4]] | |||
|- | |- | ||
| 15 | |||
| 421.173 | |||
| 51/40 | |||
| | |||
|- | |- | ||
| 16 | |||
| 449.2512 | |||
| | |||
| | |||
|- | |- | ||
| 17 | |||
| 477.3294 | |||
| | |||
| | |||
|- | |- | ||
| 18 | |||
| 505.4076 | |||
| 75/56 | |||
| pseudo-[[4/3]] | |||
|- | |- | ||
| 19 | |||
| 533.4858 | |||
| | |||
| | |||
|- | |- | ||
| 20 | |||
| 561.564 | |||
| | |||
| | |||
|- | |- | ||
| 21 | |||
| 589.6422 | |||
| [[45/32]] | |||
| | |||
|- | |- | ||
| 22 | |||
| 617.7204 | |||
| [[10/7]] | |||
| | |||
|- | |- | ||
| 23 | |||
| 645.7986 | |||
| | |||
| | |||
|- | |- | ||
| 24 | |||
| 673.8768 | |||
| | |||
| | |||
|- | |- | ||
| 25 | |||
| 701.955 | |||
| '''exact [[3/2]]''' | |||
| just perfect fifth | |||
|- | |- | ||
|26 | | 26 | ||
|730.033 | | 730.033 | ||
|153/100 | | 153/100 | ||
| | | | ||
|- | |- | ||
|27 | | 27 | ||
|757.1114 | | 757.1114 | ||
|39/25 | | 39/25 | ||
| | | | ||
|- | |- | ||
|28 | | 28 | ||
|786.1896 | | 786.1896 | ||
|63/40 | | 63/40 | ||
| | | | ||
|- | |- | ||
|29 | | 29 | ||
|814.2678 | | 814.2678 | ||
|8/5 | | 8/5 | ||
| | | | ||
|- | |- | ||
|30 | | 30 | ||
|842.346 | | 842.346 | ||
|13/8 | | 13/8 | ||
| | | | ||
|- | |- | ||
|31 | | 31 | ||
|870.2452 | | 870.2452 | ||
| | | | ||
| | | | ||
|- | |- | ||
|32 | | 32 | ||
|898.5024 | | 898.5024 | ||
|42/25 | | 42/25 | ||
| | | | ||
|- | |- | ||
|33 | | 33 | ||
|926.5806 | | 926.5806 | ||
|12/7 | | 12/7 | ||
| | | | ||
|- | |- | ||
|34 | | 34 | ||
|954.6588 | | 954.6588 | ||
| | | | ||
| | | | ||
|- | |- | ||
|35 | | 35 | ||
|982.737 | | 982.737 | ||
|30/17 | | 30/17 | ||
| | | | ||
|- | |- | ||
|36 | | 36 | ||
|1010.8152 | | 1010.8152 | ||
| | | | ||
|pseudo-9/5 | | pseudo-9/5 | ||
|- | |- | ||
|37 | | 37 | ||
|1038.8934 | | 1038.8934 | ||
| | | | ||
| | | | ||
|- | |- | ||
|38 | | 38 | ||
|1066.9716 | | 1066.9716 | ||
| | | | ||
| | | | ||
|- | |- | ||
|39 | | 39 | ||
|1095.0498 | | 1095.0498 | ||
| | | | ||
|pseudo-15/8 | | pseudo-15/8 | ||
|- | |- | ||
|40 | | 40 | ||
|1123.128 | | 1123.128 | ||
|153/80 | | 153/80 | ||
| | | | ||
|- | |- | ||
|41 | | 41 | ||
|1151.2062 | | 1151.2062 | ||
| | | | ||
| | | | ||
|- | |- | ||
|42 | | 42 | ||
|1179.2844 | | 1179.2844 | ||
| | | | ||
| | | | ||
|- | |- | ||
|43 | | 43 | ||
|1207.3526 | | 1207.3526 | ||
|225/112 | | 225/112 | ||
|pseudo-2/1 | | pseudo-2/1 | ||
|- | |- | ||
|44 | | 44 | ||
|1235.4408 | | 1235.4408 | ||
| | | | ||
| | | | ||
|- | |- | ||
|45 | | 45 | ||
|1263.519 | | 1263.519 | ||
| | | | ||
| | | | ||
|- | |- | ||
|46 | | 46 | ||
|1291.5972 | | 1291.5972 | ||
|135/64 | | 135/64 | ||
| | | | ||
|- | |- | ||
|47 | | 47 | ||
|1319.6754 | | 1319.6754 | ||
|15/7 | | 15/7 | ||
| | | | ||
|- | |- | ||
|48 | | 48 | ||
|1347.7536 | | 1347.7536 | ||
| | | | ||
| | | | ||
|- | |- | ||
|49 | | 49 | ||
|1375.8318 | | 1375.8318 | ||
| | | | ||
| | | | ||
|- | |- | ||
|50 | | 50 | ||
|1403.91 | | 1403.91 | ||
|'''exact''' 9/4 | | '''exact''' 9/4 | ||
| | | | ||
|} | |} | ||
{{todo|expand}} | {{todo|expand}} | ||
Latest revision as of 19:21, 1 August 2025
← 24edf | 25edf | 26edf → |
25 equal divisions of the perfect fifth (abbreviated 25edf or 25ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 25 equal parts of about 28.1 ¢ each. Each step represents a frequency ratio of (3/2)1/25, or the 25th root of 3/2. It corresponds to 42.7378 edo (similar to every fourth step of 171edo).
It is related to the regular temperament which tempers out 703125/702464 and 5250987/5242880 in the 7-limit, which is supported by 43edo, 128edo, 171edo, 214edo, 299edo, and 385edo.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.4 | +7.4 | -6.6 | +0.6 | +4.3 | -4.2 | +8.7 | +12.7 | -9.2 | +10.7 | +7.5 |
Relative (%) | +26.2 | +26.2 | -23.4 | +2.0 | +15.2 | -14.9 | +31.1 | +45.3 | -32.7 | +38.1 | +26.9 | |
Steps (reduced) |
43 (18) |
68 (18) |
99 (24) |
120 (20) |
148 (23) |
158 (8) |
175 (0) |
182 (7) |
193 (18) |
208 (8) |
212 (12) |
Harmonic | 37 | 41 | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.1 | +0.8 | +2.6 | -11.0 | +5.7 | -11.5 | -13.1 | -7.1 | +4.9 | +12.9 | -11.5 |
Relative (%) | +36.0 | +3.0 | +9.3 | -39.1 | +20.1 | -41.1 | -46.7 | -25.1 | +17.3 | +46.1 | -41.0 | |
Steps (reduced) |
223 (23) |
229 (4) |
232 (7) |
237 (12) |
245 (20) |
251 (1) |
253 (3) |
259 (9) |
263 (13) |
265 (15) |
269 (19) |
Intervals
Degree | Cents | Corresponding JI intervals |
Comments |
---|---|---|---|
0 | exact 1/1 | ||
1 | 28.0782 | 51/50 | |
2 | 56.1564 | 26/25 | |
3 | 84.2346 | 21/20 | |
4 | 112.3128 | 16/15 | |
5 | 140.391 | 13/12 | |
6 | 168.4692 | ||
7 | 196.5474 | 28/25 | |
8 | 224.6256 | 8/7 | |
9 | 252.7038 | ||
10 | 280.782 | 20/17 | |
11 | 308.8602 | pseudo-6/5 | |
12 | 336.9384 | ||
13 | 365.0166 | ||
14 | 393.0948 | pseudo-5/4 | |
15 | 421.173 | 51/40 | |
16 | 449.2512 | ||
17 | 477.3294 | ||
18 | 505.4076 | 75/56 | pseudo-4/3 |
19 | 533.4858 | ||
20 | 561.564 | ||
21 | 589.6422 | 45/32 | |
22 | 617.7204 | 10/7 | |
23 | 645.7986 | ||
24 | 673.8768 | ||
25 | 701.955 | exact 3/2 | just perfect fifth |
26 | 730.033 | 153/100 | |
27 | 757.1114 | 39/25 | |
28 | 786.1896 | 63/40 | |
29 | 814.2678 | 8/5 | |
30 | 842.346 | 13/8 | |
31 | 870.2452 | ||
32 | 898.5024 | 42/25 | |
33 | 926.5806 | 12/7 | |
34 | 954.6588 | ||
35 | 982.737 | 30/17 | |
36 | 1010.8152 | pseudo-9/5 | |
37 | 1038.8934 | ||
38 | 1066.9716 | ||
39 | 1095.0498 | pseudo-15/8 | |
40 | 1123.128 | 153/80 | |
41 | 1151.2062 | ||
42 | 1179.2844 | ||
43 | 1207.3526 | 225/112 | pseudo-2/1 |
44 | 1235.4408 | ||
45 | 1263.519 | ||
46 | 1291.5972 | 135/64 | |
47 | 1319.6754 | 15/7 | |
48 | 1347.7536 | ||
49 | 1375.8318 | ||
50 | 1403.91 | exact 9/4 |