Vulture family: Difference between revisions
m Link to german |
m Text replacement - "Category:Temperament families" to "Category:Temperament families Category:Pages with mostly numerical content" |
||
(32 intermediate revisions by 6 users not shown) | |||
Line 4: | Line 4: | ||
| es = | | es = | ||
| ja = | | ja = | ||
The '''vulture family''' of [[temperament]]s [[tempers out]] the [[vulture comma]] | }} | ||
{{Technical data page}} | |||
The '''vulture family''' of [[temperament]]s [[tempering out|tempers out]] the [[vulture comma]] ({{monzo|legend=1| 24 -21 4 }}, [[ratio]]: 10 485 760 000 / 10 460 353 203), a small [[5-limit]] comma of 4.2 [[cent]]s. | |||
Temperaments discussed elsewhere | Temperaments discussed elsewhere include [[Landscape microtemperaments #Terture|terture]] and [[Buzzardsmic clan #Buzzard|buzzard]]. Considered below are septimal vulture, condor, eagle, and turkey. | ||
== Vulture == | == Vulture == | ||
The generator of the vulture temperament is a grave fourth of [[320/243]], that is, a [[4/3|perfect fourth]] minus a [[81/80|syntonic comma]]. Four of these make a [[3/1|perfect twelfth]]. Its [[ploidacot]] is alpha-tetracot. It is a member of the [[syntonic–diatonic equivalence continuum]] with {{nowrap|''n'' {{=}} 4}}, so it equates a [[256/243|Pythagorean limma]] with a stack of four syntonic commas. It is also in the [[schismic–Mercator equivalence continuum]] with {{nowrap|''n'' {{=}} 4}}, so unless [[53edo]] is used as a tuning, the [[schisma]] is always observed. | |||
[[Subgroup]]: 2.3.5 | [[Subgroup]]: 2.3.5 | ||
Line 17: | Line 21: | ||
: mapping generators: ~2, ~320/243 | : mapping generators: ~2, ~320/243 | ||
[[Optimal tuning]] | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.000, ~320/243 = 475.5351 | |||
: [[error map]]: {{val| 0.0000 +0.1855 -0.0758 }} | |||
* [[POTE]]: ~2 = 1200.000, ~320/243 = 475.5426 | |||
: error map: {{val| 0.0000 +0.2154 +0.0811 }} | |||
{{Optimal ET sequence|legend=1| 53, 164, 217, 270, 323, 2531, 2854b, 3177b, | {{Optimal ET sequence|legend=1| 53, 164, 217, 270, 323, 2531, 2854b, 3177b, …, 4469b }} | ||
[[Badness]]: 0.041431 | [[Badness]]: | ||
* Smith: 0.041431 | |||
* Dirichlet: 0.972 | |||
== Septimal vulture == | == Septimal vulture == | ||
Septimal vulture can be described as the {{nowrap| 53 & 270 }} microtemperament, tempering out the [[ragisma]], 4375/4374 and the [[garischisma]], 33554432/33480783 ({{monzo| 25 -14 0 -1 }}) aside from the vulture comma. [[270edo]] is a good tuning for this temperament, with generator 107\270. The harmonic 7 is found at -14 fifths or {{nowrap| (-14) × 4 {{=}} -56 }} generator steps, so that the smallest [[mos scale]] that includes it is the 58-note one, though for larger scope of harmony, you could try the 111- or 164-note one. For a much simpler mapping of 7 at the cost of higher error, you could try [[#Buzzard|buzzard]]. | |||
It can be extended to the 11-limit by identifying a stack of four [[5/4]]'s as [[11/9]], tempering out [[5632/5625]], and to the 13-limit by identifying the hemitwelfth as [[26/15]], tempering out [[676/675]]. Furthermore, the generator of vulture is very close to [[25/19]]; a stack of three generator steps octave-reduced thus represents its fifth complement, [[57/50]]. This corresponds to tempering out [[1216/1215]] with the effect of equating the schisma with [[513/512]] and [[361/360]] in addition to many 11- and 13-limit commas. 270edo remains an excellent tuning in all cases. | |||
[[Subgroup]]: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
Line 32: | Line 44: | ||
{{Mapping|legend=1| 1 0 -6 25 | 0 4 21 -56 }} | {{Mapping|legend=1| 1 0 -6 25 | 0 4 21 -56 }} | ||
{{ | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.0000, ~320/243 = 475.5528 | |||
: [[error map]]: {{val| 0.0000 +0.2561 +0.2945 +0.2188 }} | |||
* [[POTE]]: ~2 = 1200.0000, ~320/243 = 475.5511 | |||
: error map: {{val| 0.0000 +0.2495 +0.2601 +0.3106 }} | |||
{{Optimal ET sequence|legend=1| 53, 164, 217, 270, 593, 863, 1133 }} | {{Optimal ET sequence|legend=1| 53, 164, 217, 270, 593, 863, 1133 }} | ||
[[Badness]]: 0.036985 | [[Badness]] (Smith): 0.036985 | ||
=== 11-limit === | === 11-limit === | ||
Line 47: | Line 61: | ||
Mapping: {{mapping| 1 0 -6 25 -33 | 0 4 21 -56 92 }} | Mapping: {{mapping| 1 0 -6 25 -33 | 0 4 21 -56 92 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1200.0000, ~320/243 = 475.5558 | |||
* POTE: ~2 = 1200.0000, ~320/243 = 475.5567 | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 53, 217, 270, 2107c, 2377bc }} | ||
Badness: 0.031907 | Badness (Smith): 0.031907 | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Line 60: | Line 76: | ||
Mapping: {{mapping| 1 0 -6 25 -33 -7 | 0 4 21 -56 92 27 }} | Mapping: {{mapping| 1 0 -6 25 -33 -7 | 0 4 21 -56 92 27 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1200.0000, ~320/243 = 475.5566 | |||
* POTE: ~2 = 1200.0000, ~320/243 = 475.5572 | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 53, 217, 270 }} | ||
Badness: 0.018758 | Badness (Smith): 0.018758 | ||
==== | ==== 2.3.5.7.11.13.19 subgroup ==== | ||
Subgroup: 2.3.5.7.11.13.17.19 | Subgroup: 2.3.5.7.11.13.17.19 | ||
Comma list: 676/675 | Comma list: 676/675, 1001/1000, 1216/1215, 1540/1539, 1729/1728 | ||
Mapping: {{mapping| 1 0 -6 25 -33 -7 | Mapping: {{mapping| 1 0 -6 25 -33 -7 -12 | 0 4 21 -56 92 27 41 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~2 = 1200.0000, ~25/19 = 475.5561 | |||
* CWE: ~2 = 1200.0000, , ~25/19 = 475.5569 | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 53, 217, 270 }} | ||
Badness: 0. | Badness (Smith): 0.00704 | ||
=== Semivulture === | === Semivulture === | ||
Line 101: | Line 108: | ||
: mapping generators: ~99/70, ~320/243 | : mapping generators: ~99/70, ~320/243 | ||
Optimal | Optimal tunings: | ||
* CTE: ~99/70 = 600.0000, ~320/243 = 475.5523 | |||
* POTE: ~99/70 = 600.0000, ~320/243 = 475.5496 | |||
{{Optimal ET sequence|legend= | {{Optimal ET sequence|legend=0| 106, 164, 270, 916, 1186, 1456 }} | ||
Badness: 0.040799 | Badness (Smith): 0.040799 | ||
==== 13-limit ==== | ==== 13-limit ==== | ||
Line 114: | Line 123: | ||
Mapping: {{mapping| 2 0 -12 50 41 -14 | 0 4 21 -56 -43 27 }} | Mapping: {{mapping| 2 0 -12 50 41 -14 | 0 4 21 -56 -43 27 }} | ||
Optimal | Optimal tunings: | ||
* CTE: ~99/70 = 600.0000, ~320/243 = 475.5540 | |||
* POTE: ~99/70 = 600.0000, ~320/243 = 475.553 | |||
= | |||
= | {{Optimal ET sequence|legend=0| 106, 164, 270 }} | ||
Badness (Smith): 0.035458 | |||
Badness | |||
== Condor == | == Condor == | ||
Line 223: | Line 137: | ||
{{Mapping|legend=1| 1 8 36 29 | 0 -12 -63 -49 }} | {{Mapping|legend=1| 1 8 36 29 | 0 -12 -63 -49 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~81/56 = 641.4791 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~81/56 = 641.4791 | ||
Line 279: | Line 191: | ||
: mapping generators: ~177147/125440, ~28/27 | : mapping generators: ~177147/125440, ~28/27 | ||
[[Optimal tuning]] ([[POTE]]): ~177147/125440 = 1\2, ~28/27 = 62.229 | [[Optimal tuning]] ([[POTE]]): ~177147/125440 = 1\2, ~28/27 = 62.229 | ||
Line 320: | Line 230: | ||
{{Mapping|legend=1| 1 8 36 0 | 0 -16 -84 7 }} | {{Mapping|legend=1| 1 8 36 0 | 0 -16 -84 7 }} | ||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1715/1296 = 481.120 | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1715/1296 = 481.120 | ||
Line 356: | Line 264: | ||
[[Category:Temperament families]] | [[Category:Temperament families]] | ||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Vulture family| ]] <!-- main article --> | [[Category:Vulture family| ]] <!-- main article --> | ||
[[Category:Vulture| ]] <!-- key article --> | [[Category:Vulture| ]] <!-- key article --> | ||
[[Category:Rank 2]] | [[Category:Rank 2]] |
Latest revision as of 00:36, 24 June 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The vulture family of temperaments tempers out the vulture comma (monzo: [24 -21 4⟩, ratio: 10 485 760 000 / 10 460 353 203), a small 5-limit comma of 4.2 cents.
Temperaments discussed elsewhere include terture and buzzard. Considered below are septimal vulture, condor, eagle, and turkey.
Vulture
The generator of the vulture temperament is a grave fourth of 320/243, that is, a perfect fourth minus a syntonic comma. Four of these make a perfect twelfth. Its ploidacot is alpha-tetracot. It is a member of the syntonic–diatonic equivalence continuum with n = 4, so it equates a Pythagorean limma with a stack of four syntonic commas. It is also in the schismic–Mercator equivalence continuum with n = 4, so unless 53edo is used as a tuning, the schisma is always observed.
Subgroup: 2.3.5
Comma list: 10485760000/10460353203
Mapping: [⟨1 0 -6], ⟨0 4 21]]
- mapping generators: ~2, ~320/243
- CTE: ~2 = 1200.000, ~320/243 = 475.5351
- error map: ⟨0.0000 +0.1855 -0.0758]
- POTE: ~2 = 1200.000, ~320/243 = 475.5426
- error map: ⟨0.0000 +0.2154 +0.0811]
Optimal ET sequence: 53, 164, 217, 270, 323, 2531, 2854b, 3177b, …, 4469b
- Smith: 0.041431
- Dirichlet: 0.972
Septimal vulture
Septimal vulture can be described as the 53 & 270 microtemperament, tempering out the ragisma, 4375/4374 and the garischisma, 33554432/33480783 ([25 -14 0 -1⟩) aside from the vulture comma. 270edo is a good tuning for this temperament, with generator 107\270. The harmonic 7 is found at -14 fifths or (-14) × 4 = -56 generator steps, so that the smallest mos scale that includes it is the 58-note one, though for larger scope of harmony, you could try the 111- or 164-note one. For a much simpler mapping of 7 at the cost of higher error, you could try buzzard.
It can be extended to the 11-limit by identifying a stack of four 5/4's as 11/9, tempering out 5632/5625, and to the 13-limit by identifying the hemitwelfth as 26/15, tempering out 676/675. Furthermore, the generator of vulture is very close to 25/19; a stack of three generator steps octave-reduced thus represents its fifth complement, 57/50. This corresponds to tempering out 1216/1215 with the effect of equating the schisma with 513/512 and 361/360 in addition to many 11- and 13-limit commas. 270edo remains an excellent tuning in all cases.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 33554432/33480783
Mapping: [⟨1 0 -6 25], ⟨0 4 21 -56]]
- CTE: ~2 = 1200.0000, ~320/243 = 475.5528
- error map: ⟨0.0000 +0.2561 +0.2945 +0.2188]
- POTE: ~2 = 1200.0000, ~320/243 = 475.5511
- error map: ⟨0.0000 +0.2495 +0.2601 +0.3106]
Optimal ET sequence: 53, 164, 217, 270, 593, 863, 1133
Badness (Smith): 0.036985
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 5632/5625, 41503/41472
Mapping: [⟨1 0 -6 25 -33], ⟨0 4 21 -56 92]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~320/243 = 475.5558
- POTE: ~2 = 1200.0000, ~320/243 = 475.5567
Optimal ET sequence: 53, 217, 270, 2107c, 2377bc
Badness (Smith): 0.031907
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 4096/4095, 4375/4374
Mapping: [⟨1 0 -6 25 -33 -7], ⟨0 4 21 -56 92 27]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~320/243 = 475.5566
- POTE: ~2 = 1200.0000, ~320/243 = 475.5572
Optimal ET sequence: 53, 217, 270
Badness (Smith): 0.018758
2.3.5.7.11.13.19 subgroup
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 676/675, 1001/1000, 1216/1215, 1540/1539, 1729/1728
Mapping: [⟨1 0 -6 25 -33 -7 -12], ⟨0 4 21 -56 92 27 41]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~25/19 = 475.5561
- CWE: ~2 = 1200.0000, , ~25/19 = 475.5569
Optimal ET sequence: 53, 217, 270
Badness (Smith): 0.00704
Semivulture
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 33554432/33480783
Mapping: [⟨2 0 -12 50 41], ⟨0 4 21 -56 -43]]
- mapping generators: ~99/70, ~320/243
Optimal tunings:
- CTE: ~99/70 = 600.0000, ~320/243 = 475.5523
- POTE: ~99/70 = 600.0000, ~320/243 = 475.5496
Optimal ET sequence: 106, 164, 270, 916, 1186, 1456
Badness (Smith): 0.040799
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 3025/3024, 4096/4095, 4375/4374
Mapping: [⟨2 0 -12 50 41 -14], ⟨0 4 21 -56 -43 27]]
Optimal tunings:
- CTE: ~99/70 = 600.0000, ~320/243 = 475.5540
- POTE: ~99/70 = 600.0000, ~320/243 = 475.553
Optimal ET sequence: 106, 164, 270
Badness (Smith): 0.035458
Condor
Subgroup: 2.3.5.7
Comma list: 10976/10935, 40353607/40000000
Mapping: [⟨1 8 36 29], ⟨0 -12 -63 -49]]
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4791
Optimal ET sequence: 58, 159, 217
Badness: 0.154715
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 4000/3993, 10976/10935
Mapping: [⟨1 8 36 29 35], ⟨0 -12 -63 -49 -59]]
Optimal tuning (POTE): ~2 = 1\1, 81/56 = 641.4822
Optimal ET sequence: 58, 101cd, 159, 217
Badness: 0.048401
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 676/675, 10976/10935
Mapping: [⟨1 8 36 29 35 47], ⟨0 -12 -63 -49 -59 -81]]
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4797
Optimal ET sequence: 58, 159, 217
Badness: 0.025469
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 364/363, 441/440, 595/594, 676/675, 8624/8619
Mapping: [⟨1 8 36 29 35 47 -5], ⟨0 -12 -63 -49 -59 -81 17]]
Optimal tuning (POTE): ~2 = 1\1, ~81/56 = 641.4794
Optimal ET sequence: 58, 159, 217
Badness: 0.021984
Eagle
Subgroup: 2.3.5.7
Comma list: 2401/2400, 10485760000/10460353203
Mapping: [⟨2 4 9 8], ⟨0 -8 -42 -23]]
- mapping generators: ~177147/125440, ~28/27
Optimal tuning (POTE): ~177147/125440 = 1\2, ~28/27 = 62.229
Optimal ET sequence: 58, 154c, 212, 270, 752, 1022, 1292, 2854b
Badness: 0.059498
11-limit
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 9801/9800, 19712/19683
Mapping: [⟨2 4 9 8 12], ⟨0 -8 -42 -23 -49]]
Optimal tuning (POTE): ~99/70 = 1\2, ~28/27 = 62.224
Optimal ET sequence: 58, 154ce, 212, 270
Badness: 0.024885
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 1716/1715, 10648/10647
Mapping: [⟨2 4 9 8 12 13], ⟨0 -8 -42 -23 -49 -54]]
Optimal tuning (POTE): ~99/70 = 1\2, ~28/27 = 62.220
Optimal ET sequence: 58, 154cef, 212, 270
Badness: 0.016282
Turkey
Subgroup: 2.3.5.7
Comma list: 4802000/4782969, 5250987/5242880
Mapping: [⟨1 8 36 0], ⟨0 -16 -84 7]]
Optimal tuning (POTE): ~2 = 1\1, ~1715/1296 = 481.120
Optimal ET sequence: 5, 207c, 212, 429
Badness: 0.210964
11-limit
Subgroup: 2.3.5.7.11
Comma list: 19712/19683, 42875/42768, 160083/160000
Mapping: [⟨1 8 36 0 64], ⟨0 -16 -84 7 -151]]
Optimal tuning (POTE): ~2 = 1\1, ~33/25 = 481.120
Badness: 0.079694
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 19712/19683, 31213/31104
Mapping: [⟨1 8 36 0 64 47], ⟨0 -16 -84 7 -151 -108]]
Optimal tuning (POTE): ~2 = 1\1, ~33/25 = 481.118
Optimal ET sequence: 212, 217, 429
Badness: 0.043787