Jubilismic clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Ordering by strong/weak extension
m Update linking
 
(58 intermediate revisions by 9 users not shown)
Line 1: Line 1:
The '''jubilismic clan''' tempers out the jubilisma, [[50/49]], which means [[7/5]] and [[10/7]] are identified and the [[octave]] is divided in two.  
{{Technical data page}}
The '''jubilismic clan''' tempers out the jubilisma, [[50/49]], which means [[7/5]] and [[10/7]] are both equated to the 600-cent tritone and the [[octave]] is divided in two.  


Doublewide, lemba and diminished are discussed below; others in the clan are [[Diaschismic family #Pajara|pajara]], [[Dicot family #Decimal|decimal]], [[Meantone family #Injera|injera]], [[Trienstonic clan #Octokaidecal|octokaidecal]], [[Porcupine family #Hedgehog|hedgehog]], [[Pelogic family #Bipelog|bipelog]], [[Augmented family #Hexe|hexe]] and [[Magic family #Astrology|astrology]], which are discussed elsewhere.
== Jubilic ==
The head of this clan, jubilic, is generated by [[~]][[5/4]]. That and a semioctave give ~[[7/4]]. As such, a reasonable tuning would tune the 5/4 flat and 7/4 sharp.  


== No-3 jubilismic ==
[[Subgroup]]: 2.5.7


Subgroup: 2.5.7
[[Comma list]]: 50/49


[[Sval]] [[mapping]]: [{{val| 2 1 1 }}, {{val| 0 1 1 }}]
{{Mapping|legend=2| 2 0 1 | 0 1 1 }}


[[Gencom]] [[mapping]]: [{{val| 2 0 1 1 }}, {{val| 0 0 1 1 }}]
: sval mapping generators: ~7/5, ~5


[[POTE generator]]: ~5/4 = 380.840
{{Mapping|legend=3| 2 0 0 1 | 0 0 1 1 }}


{{Val list|legend=1| 2, 4, 6, 16, 22, 60d, 82d, 104dd }}
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 599.6673{{c}}, ~5/4 = 380.6287{{c}} (~8/7 = 219.0386{{c}})
: [[error map]]: {{val| -0.665 -7.016 +10.139 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.0086{{c}} (~8/7 = 219.9914{{c}})
: error map: {{val| 0.000 -6.305 +11.183 }}
 
{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 60d }}
 
[[Badness]] (Sintel): 0.140
 
=== Overview to extensions ===
Lemba finds the perfect fifth three steps away by tempering out [[1029/1024]]. Astrology, five steps away by tempering out [[3125/3072]]. Decimal, two steps away by tempering out [[25/24]] and [[49/48]]. Walid merges ~5/4 and ~4/3 by tempering out [[16/15]].
 
Diminished adds 36/35 and splits the ~7/5 period in a further two. Pajara adds 64/63 and slices the ~7/4 in two, with antikythera being every other step thereof. Dubbla adds 78125/73728 and slices the ~5/4 in two. Injera adds 81/80 and slices the ~5/1 in four. Octokaidecal adds 28/27. Bipelog adds 135/128. Those splits the generator into three in various ways. Hexe adds 128/125 and slices the period in three. Hedgehog adds 250/243. Elvis adds 8505/8192. Those slice the generator in five. Comic adds 2240/2187. Crepuscular adds 4375/4374. Those slice the generator in seven. Byhearted adds 19683/19208. Bipyth adds 20480/19683. Those slice the generator in nine.
 
Temperaments discussed elsewhere are:
* [[Decimal]] (+25/24) → [[Dicot family #Decimal|Dicot family]]
* [[Diminished (temperament)|Diminished]] (+36/35) → [[Diminished family #Septimal diminished|Diminished family]]
* [[Pajara]] (+64/63) → [[Diaschismic family #Pajara|Diaschismic family]]
* ''[[Dubbla]]'' (+78125/73728) → [[Wesley family #Dubbla|Wesley family]]
* ''[[Injera]]'' (+81/80) → [[Meantone family #Injera|Meantone family]]
* ''[[Octokaidecal]]'' (+28/27) → [[Trienstonic clan #Octokaidecal|Trienstonic clan]]
* ''[[Bipelog]]'' (+135/128) → [[Mavila #Bipelog|Mavila family]]
* ''[[Hexe]]'' (+128/125) → [[Augmented family #Hexe|Augmented family]]
* ''[[Hedgehog]]'' (+250/243) → [[Porcupine family #Hedgehog|Porcupine family]]
* ''[[Crepuscular]]'' (+4375/4374) → [[Fifive family #Crepuscular|Fifive family]]
* ''[[Byhearted]]'' (+19683/19208) → [[Tetracot family #Byhearted|Tetracot family]]
 
Considered below are lemba, astrology, walid, antikythera, doublewide, elvis, comic, and bipyth.


== Lemba ==
== Lemba ==
{{main| Lemba }}
{{Main| Lemba }}
{{see also| Gamelismic clan #Lemba }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Lemba]].''
 
Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth. It may be described as the {{nowrap| 10 & 16 }} temperament; its [[ploidacot]] is diploid tricot.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 50/49, 525/512
[[Comma list]]: 50/49, 525/512


[[Mapping]]: [{{val| 2 2 5 6 }}, {{val| 0 3 -1 -1 }}]
{{Mapping|legend=1| 2 2 5 6 | 0 3 -1 -1 }}


[[POTE generator]]: ~8/7 = 232.089
: mapping generators: ~7/5, ~8/7


{{Val list|legend=1| 10, 16, 26, 62 }}
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 601.4623{{c}}, ~8/7 = 232.6544{{c}}
: [[error map]]: {{val| +2.925 -1.067 -11.656 +7.294 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~8/7 = 232.2655{{c}}
: error map: {{val| 0.000 -5.158 -18.579 -1.091 }}


[[Badness]]: 0.0622
{{Optimal ET sequence|legend=1| 10, 16, 26, 36c, 62c }}
 
[[Badness]] (Sintel): 1.57


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 45/44, 50/49, 385/384
Comma list: 45/44, 50/49, 385/384


Mapping: [{{val| 2 2 5 6 5 }}, {{val| 0 3 -1 -1 5 }}]
Mapping: {{mapping| 2 2 5 6 5 | 0 3 -1 -1 5 }}


POTE generator: ~8/7 = 230.974
Optimal tunings:  
* WE: ~7/5 = 601.1769{{c}}, ~8/7 = 231.4273{{c}}
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1781{{c}}


{{Val list|legend=1| 10, 16, 26 }}
{{Optimal ET sequence|legend=0| 10, 16, 26 }}


Badness: 0.0416
Badness (Sintel): 1.37


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 50/49, 65/64, 78/77
Comma list: 45/44, 50/49, 65/64, 78/77


Mapping: [{{val| 2 2 5 6 5 7 }}, {{val| 0 3 -1 -1 5 1 }}]
Mapping: {{mapping| 2 2 5 6 5 7 | 0 3 -1 -1 5 1 }}


POTE generator: ~8/7 = 230.966
Optimal tunings:  
* WE: ~7/5 = 601.1939{{c}}, ~8/7 = 231.4261{{c}}
* CWE: ~7/5 = 600.0000{{c}}, ~8/7 = 231.1617{{c}}


{{Val list|legend=1| 10, 16, 26 }}
{{Optimal ET sequence|legend=0| 10, 16, 26 }}


Badness: 0.0255
Badness (Sintel): 1.05


== Diminished ==
== Astrology ==
<div style="float: right">[[:de:Verminderte Temperaturen|Deutsch]]</div>
Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3. It may be described as the {{nowrap| 16 & 22 }} temperament; its ploidacot is diploid pentacot.
{{see also|Dimipent family #Diminished}}


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 36/35, 50/49
[[Comma list]]: 50/49, 3125/3072


[[Mapping]]: [{{val| 4 0 3 5 }}, {{val| 0 1 1 1 }}]
{{Mapping|legend=1| 2 0 4 5 | 0 5 1 1 }}


Mapping generators: ~6/5, ~3
: mapping geenerators: ~7/5, ~5/4


[[POTE generator]]: ~3/2 = 699.523
[[Optimal tuning]]s:  
* [[WE]]: ~7/5 = 599.6999{{c}}, ~5/4 = 380.3881{{c}} (~8/7 = 219.3119{{c}})
: [[error map]]: {{val| -0.600 -0.015 -7.126 +10.062 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5123{{c}} (~8/7 = 219.4877{{c}})
: error map: {{val| 0.000 +0.606 -5.801 +11.686 }}


{{Val list|legend=1| 4, 8d, 12 }}
{{Optimal ET sequence|legend=1| 6, 16, 22, 60d }}


[[Badness]]: 0.0224
[[Badness]] (Sintel): 2.09


Scales: [[diminished12]]
=== 11-limit ===
Subgroup: 2.3.5.7.11


=== 11-limit ===
Comma list: 50/49, 121/120, 176/175
 
Mapping: {{mapping| 2 0 4 5 5 | 0 5 1 1 3 }}
 
Optimal tunings:
* WE: ~7/5 = 600.0538{{c}}, ~5/4 = 380.5640{{c}} (~8/7 = 219.4897{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 380.5419{{c}} (~8/7 = 219.4581{{c}})


Subgroup: 2.3.5.7.11
{{Optimal ET sequence|legend=0| 6, 16, 22 }}


Comma list: 36/35, 50/49, 56/55
Badness (Sintel): 1.29


Mapping: [{{val| 4 0 3 5 14 }}, {{val| 0 1 1 1 0 }}]
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Mapping generators: ~6/5, ~3
Comma list: 50/49, 65/64, 78/77, 121/120


POTE generator: ~3/2 = 709.109
Mapping: {{mapping| 2 0 4 5 5 8 | 0 5 1 1 3 -1 }}


{{Val list|legend=1| 4, 8d, 12, 32cddee, 44cddeee }}
Optimal tunings:
* WE: ~7/5 = 600.7886{{c}}, ~5/4 = 380.2857{{c}} (~8/7 = 220.5028{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.9119{{c}} (~8/7 = 220.0881{{c}})


Badness: 0.0221
{{Optimal ET sequence|legend=0| 6, 16, 22, 38f }}


Scales: [[diminished12]]
Badness (Sintel): 1.42


==== 13-limit ====
; Music
* [https://soundcloud.com/joelgranttaylor/astrology-percussion-quintet ''Astrology Percussion Quintet No 1'']{{dead link}} [http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/AstrologyPercQuintet1_c.mp3 play]{{dead link}} by [[Joel Taylor]]


==== Horoscope ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 36/35, 40/39, 50/49, 66/65
Comma list: 50/49, 66/65, 105/104, 121/120
 
Mapping: {{mapping| 2 0 4 5 5 3 | 0 5 1 1 3 7 }}
 
Optimal tunings:
* WE: ~7/5 = 599.8927{{c}}, ~5/4 = 379.7688{{c}} (~8/7 = 220.1239{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~5/4 = 379.8117{{c}} (~8/7 = 220.1883{{c}})
 
{{Optimal ET sequence|legend=0| 6f, 16, 22f, 38 }}
 
Badness (Sintel): 1.46
 
== Walid ==
This low-accuracy extension tempers out 16/15, so the perfect fifth stands in for ~8/5 as in [[father]]. Its ploidacot is diploid monocot.


Mapping: [{{val| 4 0 3 5 14 15 }}, {{val| 0 1 1 1 0 0 }}]
[[Subgroup]]: 2.3.5.7


Mapping generators: ~6/5, ~3
[[Comma list]]: 16/15, 50/49


POTE generator: ~3/2 = 713.773
{{Mapping|legend=1| 2 0 8 9 | 0 1 -1 -1 }}


{{Val list|legend=1| 4, 8d, 12f, 20cdef }}
: mapping generators: ~7/5, ~3


Badness: 0.0195
[[Optimal tuning]]s:  
* [[WE]]: ~7/5 = 589.0384{{c}}, ~3/2 = 735.7242{{c}} (~15/14 = 146.6857{{c}})
: [[error map]]: {{val| -21.923 +11.846 +12.193 +18.719 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 750.4026{{c}} (~15/14 = 150.4026{{c}})
: error map: {{val| 0.000 +48.448 +63.284 +80.771 }}


Scales: [[diminished12]]
{{Optimal ET sequence|legend=1| 2, 6, 8d }}


=== Demolished ===
[[Badness]] (Sintel): 1.24


=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 36/35, 45/44, 50/49
Comma list: 16/15, 22/21, 50/49
 
Mapping: {{mapping| 2 0 8 9 7 | 0 1 -1 -1 0 }}


Mapping: [{{val| 4 0 3 5 -5 }}, {{val| 0 1 1 1 3 }}]
Optimal tunings:  
* WE: ~7/5 = 589.7684{{c}}, ~3/2 = 736.9708{{c}} (~12/11 = 147.2023{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 750.5221{{c}} (~12/11 = 150.5221{{c}})


Mapping generators: ~6/5, ~3
{{Optimal ET sequence|legend=0| 2, 6, 8d }}


POTE generator: ~3/2 = 689.881
Badness (Sintel): 0.965


{{Val list|legend=1| 12, 28, 40de }}
== Antikythera ==
Named by [[Gene Ward Smith]] in 2011<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101481.html Yahoo! Tuning Group | ''Antikythera'']</ref>, antikythera is every other step of [[pajara]].


Badness: 0.0266
[[Subgroup]]: 2.9.5.7


=== Hemidim ===
[[Comma list]]: 50/49, 64/63


Subgroup: 2.3.5.7.11
{{Mapping|legend=2| 2 0 11 12 | 0 1 -1 -1 }}


Comma list: 36/35, 50/49, 125/121
: mapping generators: ~7/5, ~9


Mapping: [{{val| 4 1 4 6 6 }}, {{val| 0 2 2 2 3 }}]
{{Mapping|legend=3| 2 3 5 6 | 0 1/2 -1 -1 }}


Mapping generators: ~6/5, ~11/7
: [[gencom]]: [7/5 8/7; 50/49 64/63]


POTE generator: ~12/11 = 101.679
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.8483{{c}}, ~9/8 = 213.6844{{c}}
: [[error map]]: {{val| -2.303 +2.864 -5.756 +10.580 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~9/8 = 214.6875{{c}}
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}


{{Val list|legend=1| 12 }}
{{Optimal ET sequence|legend=1| 2, 4, 6, 16, 22, 28 }}


Badness: 0.0550
[[Badness]] (Sintel): 0.253


== Doublewide ==
== Doublewide ==
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Doublewide (5-limit)]].''


Subgroup: 2.3.5.7
Doublewide is generated by a sharply tuned ~6/5 minor third, four of which and a semi-octave period give the 3rd harmonic. It may be described as the {{nowrap| 22 & 26 }} temperament; its ploidacot is diploid alpha-tetracot. An 11-limit extension is immediately available by identifying two generator steps as ~16/11. [[48edo]] makes for an excellent tuning.
 
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 50/49, 875/864
[[Comma list]]: 50/49, 875/864


[[Mapping]]: [{{val| 2 1 3 4 }}, {{val| 0 4 3 3 }}]
{{Mapping|legend=1| 2 1 3 4 | 0 4 3 3 }}
 
: mapping generators: ~7/5, ~6/5


[[POTE generator]]: ~6/5 = 325.719
[[Optimal tuning]]s:  
* [[WE]]: ~7/5 = 600.0365{{c}}, ~6/5 = 325.7389{{c}} (~7/6 = 274.2975{{c}})
: [[error map]]: {{val| -2.303 +2.864 -5.756 +10.580 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~6/5 = 325.7353{{c}} (~7/6 = 274.2647{{c}})
: error map: {{val| 0.000 +10.778 -1.001 +16.487 }}


{{Val list|legend=1| 4, 14bd, 18, 22, 48, 70c }}
{{Optimal ET sequence|legend=1| 4, 14bd, 18, 22, 48 }}


[[Badness]]: 0.0435
[[Badness]] (Sintel): 1.10


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 50/49, 99/98, 875/864
Comma list: 50/49, 99/98, 385/384


Mapping: [{{val| 2 1 3 4 8 }}, {{val| 0 4 3 3 -2 }}]
Mapping: {{mapping| 2 1 3 4 8 | 0 4 3 3 -2 }}


POTE generator: ~6/5 = 325.548
Optimal tunings:  
* WE: ~7/5 = 600.1818{{c}}, ~6/5 = 325.6434{{c}} (~7/6 = 274.5384{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 325.5854{{c}} (~7/6 = 274.4146{{c}})


{{Val list|legend=1| 4, 14bd, 18, 22, 48, 70c, 118cd }}
{{Optimal ET sequence|legend=0| 4, 18, 22, 48 }}


Badness: 0.0321
Badness (Sintel): 1.06


=== Fleetwood ===
=== Fleetwood ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 50/49, 55/54, 176/175
Comma list: 50/49, 55/54, 176/175


Mapping: [{{val| 2 1 3 4 2 }}, {{val| 0 4 3 3 9 }}]
Mapping: {{mapping| 2 1 3 4 2 | 0 4 3 3 9 }}


POTE generator: ~6/5 = 327.038
Optimal tunings:  
* WE: ~7/5 = 599.6049{{c}}, ~6/5 = 326.8229{{c}} (~7/6 = 272.7819{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 326.8890{{c}} (~7/6 = 273.1110{{c}})


{{Val list|legend=1| 22 }}
{{Optimal ET sequence|legend=0| 4e, …, 18e, 22 }}


Badness: 0.0352
Badness (Sintel): 1.16


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 50/49, 55/54, 65/63, 176/175
Comma list: 50/49, 55/54, 65/63, 176/175


Mapping: [{{val| 2 1 3 4 2 3 }}, {{val| 0 4 3 3 9 8 }}]
Mapping: {{mapping| 2 1 3 4 2 3 | 0 4 3 3 9 8 }}


POTE generator: ~6/5 = 327.841
Optimal tunings:  
* WE: ~7/5 = 599.5482{{c}}, ~6/5 = 327.5939{{c}} (~7/6 = 271.9543{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 327.6706{{c}} (~7/6 = 272.3294{{c}})


{{Val list|legend=1| 18e, 22, 84bddf }}
{{Optimal ET sequence|legend=0| 4ef, …, 18e, 22 }}


Badness: 0.0318
Badness (Sintel): 1.32


=== Cavalier ===
=== Cavalier ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 45/44, 50/49, 875/864
Comma list: 45/44, 50/49, 875/864


Mapping: [{{val| 2 1 3 4 1 }}, {{val| 0 4 3 3 11 }}]
Mapping: {{mapping| 2 1 3 4 1 | 0 4 3 3 11 }}


POTE generator: ~6/5 = 323.427
Optimal tunings:  
* WE: ~7/5 = 600.9467{{c}}, ~6/5 = 323.9369{{c}} (~7/6 = 277.0098{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.7272{{c}} (~7/6 = 276.2728{{c}})


{{Val list|legend=1| 22e, 26 }}
{{Optimal ET sequence|legend=0| 4e, 22e, 26 }}


Badness: 0.0529
Badness (Sintel): 1.75


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 50/49, 78/77, 325/324
Comma list: 45/44, 50/49, 78/77, 325/324


Mapping: [{{val| 2 1 3 4 1 2 }}, {{val| 0 4 3 3 11 10 }}]
Mapping: {{mapping| 2 1 3 4 1 2 | 0 4 3 3 11 10 }}


POTE generator: ~6/5 = 323.396
Optimal tunings:  
* WE: ~7/5 = 600.9537{{c}}, ~6/5 = 323.9097{{c}} (~7/6 = 277.0440{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~6/5 = 323.6876{{c}} (~7/6 = 276.3124{{c}})


{{Val list|legend=1| 22ef, 26 }}
{{Optimal ET sequence|legend=0| 4ef, 22ef, 26 }}


Badness: 0.0350
Badness (Sintel): 1.45


== Elvis ==
== Elvis ==
=== 5-limit ===
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Elvis]].''


Subgroup: 2.3.5
Elvis is generated by a ptolemaic diminished fifth, tuned sharp such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. [[26edo]] makes for an obvious tuning.  


[[Comma list]]: 36905625/33554432
[[Subgroup]]: 2.3.5.7
 
[[Mapping]]: [{{val| 2 1 10 }}, {{val| 0 2 -5 }}]
 
[[POTE generator]]: ~45/32 = 554.546
 
{{Val list|legend=1| 26, 80bc, 106bc, 132bc }}
 
[[Badness]]: 0.8840
 
=== 7-limit ===
 
Subgroup: 2.3.5.7


[[Comma list]]: 50/49, 8505/8192
[[Comma list]]: 50/49, 8505/8192


[[Mapping]]: [{{val| 2 1 10 11 }}, {{val| 0 2 -5 -5 }}]
{{Mapping|legend=1| 2 1 10 11 | 0 2 -5 -5 }}


{{Multival|legend=1| 4 -10 -10 -25 -27 5 }}
: mapping generators: ~7/5, ~64/45


[[POTE generator]]: ~45/32 = 553.721
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 601.6846{{c}}, ~64/45 = 648.0937{{c}} (~64/63 = 46.4091{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~64/45 = 646.0539{{c}} (~64/63 = 46.0539{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}


{{Val list|legend=1| 24c, 26 }}
{{Optimal ET sequence|legend=1| 2, 24c, 26 }}


[[Badness]]: 0.1415
[[Badness]] (Sintel): 3.58


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 45/44, 50/49, 1344/1331
Comma list: 45/44, 50/49, 1344/1331


Mapping: [{{val| 2 1 10 11 8 }}, {{val| 0 2 -5 -5 -1 }}]
Mapping: {{mapping| 2 1 10 11 8 | 0 2 -5 -5 -1 }}


POTE generator: ~11/8 = 553.882
Optimal tunings:  
* WE: ~7/5 = 601.2186{{c}}, ~16/11 = 647.4300{{c}} (~56/55 = 46.2114{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9681{{c}} (~56/55 = 45.9681{{c}})


{{Val list|legend=1| 26 }}
{{Optimal ET sequence|legend=0| 2, 24c, 26 }}


Badness: 0.0632
Badness (Sintel): 2.09


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 50/49, 78/77, 1053/1024
Comma list: 45/44, 50/49, 78/77, 1053/1024


Mapping: [{{val| 2 1 10 11 8 16 }}, {{val| 0 2 -5 -5 -1 -8 }}]
Mapping: {{mapping| 2 1 10 11 8 16 | 0 2 -5 -5 -1 -8 }}


POTE generator: ~11/8 = 553.892
Optimal tunings:  
* WE: ~7/5 = 601.2206{{c}}, ~16/11 = 647.4219{{c}} (~56/55 = 46.2013{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 645.9362{{c}} (~56/55 = 45.9362{{c}})


{{Val list|legend=1| 26 }}
{{Optimal ET sequence|legend=0| 2f, 24cf, 26 }}


Badness: 0.0440
Badness (Sintel): 1.82
 
== Crepuscular ==
{{see also| Fifive family #Crepuscular }}
 
Subgroup: 2.3.5.7
 
[[Comma list]]: 50/49, 4375/4374
 
[[Mapping]]: [{{val| 2 2 3 4 }}, {{val| 0 5 7 7 }}]
 
{{Multival|legend=1| 10 14 14 -1 -6 -7 }}
 
[[POTE generator]]: ~27/25 = 140.349
 
{{Val list|legend=1| 26, 34d, 60d, 94d }}
 
[[Badness]]: 0.0867
 
=== 11-limit ===
 
Subgroup: 2.3.5.7.11
 
Comma list: 50/49, 99/98, 1944/1925
 
Mapping: [{{val| 2 2 3 4 6 }}, {{val| 0 5 7 7 4 }}]
 
POTE generator: ~12/11 = 140.587
 
{{Val list|legend=1| 26, 34d, 60d, 94de }}
 
Badness: 0.0408
 
=== 13-limit ===
 
Subgroup: 2.3.5.7.11.13
 
Comma list: 50/49, 78/77, 99/98, 144/143
 
Mapping: [{{val| 2 2 3 4 6 6 }}, {{val| 0 5 7 7 4 6 }}]
 
POTE generator: ~12/11 = 140.554
 
{{Val list|legend=1| 26, 34d, 60d, 94de }}
 
Badness: 0.0244


== Comic ==
== Comic ==
=== 5-limit ===
: ''For the 5-limit version, see [[Superpyth–22 equivalence continuum #Comic (5-limit)]].''


Subgroup: 2.3.5
Comic is generated by a grave fifth, tuned flat such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. [[22edo]] makes for an obvious tuning.  


[[Comma list]]: 5120000/4782969
[[Subgroup]]: 2.3.5.7
 
[[Mapping]]: [{{val| 2 1 -3 }}, {{val| 0 2 7 }}]
 
[[POTE generator]]: ~81/80 = 55.382
 
{{Val list|legend=1| 20c, 22, 86b, 108b, 130b }}
 
Badness: 0.4912
 
=== 7-limit ===
 
Subgroup: 2.3.5.7


[[Comma list]]: 50/49, 2240/2187
[[Comma list]]: 50/49, 2240/2187


[[Mapping]]: [{{val| 2 1 -3 -2 }}, {{val| 0 2 7 7 }}]
{{Mapping|legend=1| 2 1 -3 -2 | 0 2 7 7 }}


{{Multival|legend=1| 4 14 14 13 11 -7 }}
: mapping generators: ~7/5, ~40/27


[[POTE generator]]: ~81/80 = 54.699
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.9554{{c}}, ~40/27 = 653.5596{{c}} (~28/27 = 54.6042{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~40/27 = 654.3329{{c}} (~28/27 = 54.3329{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}


{{Val list|legend=1| 20cd, 22 }}
{{Optimal ET sequence|legend=1| 2cd, …, 20cd, 22 }}


[[Badness]]: 0.0844
[[Badness]] (Sintel): 2.14


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 50/49, 99/98, 2662/2625
Comma list: 50/49, 99/98, 2662/2625


Mapping: [{{val| 2 1 -3 -2 -4 }}, {{val| 0 2 7 7 10 }}]
Mapping: {{mapping| 2 1 -3 -2 -4 | 0 2 7 7 10 }}


POTE generator: ~81/80 = 55.184
Optimal tunings:  
* WE: ~7/5 = 598.8161{{c}}, ~22/15 = 653.8909{{c}} (~28/27 = 55.0747{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.7898{{c}} (~28/27 = 54.7898{{c}})


{{Val list|legend=1| 20cde, 22 }}
{{Optimal ET sequence|legend=0| 2cde, …, 20cde, 22 }}


Badness: 0.0451
Badness (Sintel): 1.49


=== 13-limit ===
=== 13-limit ===
 
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11


Comma list: 50/49, 65/63, 99/98, 968/945
Comma list: 50/49, 65/63, 99/98, 968/945


Mapping: [{{val| 2 1 -3 -2 -4 3 }}, {{val| 0 2 7 7 10 4 }}]
Mapping: {{mapping| 2 1 -3 -2 -4 3 | 0 2 7 7 10 4 }}


POTE generator: ~81/80 = 54.435
Optimal tunings:  
* WE: ~7/5 = 600.1030{{c}}, ~22/15 = 654.5470{{c}} (~28/27 = 54.4440{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~22/15 = 654.4665{{c}} (~28/27 = 54.4665{{c}})


{{Val list|legend=1| 22 }}
{{Optimal ET sequence|legend=0| 2cde, 20cde, 22 }}


Badness: 0.0415
Badness (Sintel): 1.71


== Bipyth ==
== Bipyth ==
Bipyth tempers out the 5-limit [[superpyth comma]], 20480/19683, making it an alternative extension of 5-limit [[superpyth]]. Its ploidacot is diploid monocot.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 50/49, 20480/19683
[[Comma list]]: 50/49, 20480/19683


[[Mapping]]: [{{val| 2 0 -24 -23 }}, {{val| 0 1 9 9 }}]
{{Mapping|legend=1| 2 0 -24 -23 | 0 1 9 9 }}


{{Multival|legend=1| 2 18 18 24 23 -9 }}
: mapping generators: ~7/5, ~3


[[POTE generator]]: ~3/2 = 709.437
[[Optimal tuning]]s:
* [[WE]]: ~7/5 = 598.7533{{c}}, ~3/2 = 707.9630{{c}} (~15/14 = 109.2098{{c}})
: [[error map]]: {{val| +3.369 -4.083 -9.936 +9.236 }}
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1579{{c}} (~15/14 = 109.1579{{c}})
: error map: {{val| 0.000 -9.847 -16.583 +0.904 }}


{{Val list|legend=1| 10cd, 12cd, 22 }}
{{Optimal ET sequence|legend=1| 10cd, 12cd, 22 }}


[[Badness]]: 0.1650
[[Badness]] (Sintel): 4.18


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 50/49, 121/120, 896/891
Comma list: 50/49, 121/120, 896/891


Mapping: [{{val| 2 0 -24 -23 -9 }}, {{val| 0 1 9 9 5 }}]
Mapping: {{mapping| 2 0 -24 -23 -9 | 0 1 9 9 5 }}
 
POTE generator: ~3/2 = 709.310


{{Val list|legend=1| 10cd, 12cde, 22 }}
Optimal tunings:
* WE: ~7/5 = 599.2296{{c}}, ~3/2 = 708.3992{{c}} (~15/14 = 109.1697{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 709.1395{{c}} (~15/14 = 109.1395{{c}})


Badness: 0.0709
{{Optimal ET sequence|legend=0| 10cd, 12cde, 22 }}


== Duodecim ==
Badness (Sintel): 2.34


Subgroup: 2.3.5.7.11
== Sedecic ==
Sedecic has 1/16-octave period and may be thought of as 16edo with an independent generator for prime 3. Its ploidacot is 16-ploid monocot.  


Comma list: 36/35, 50/49, 64/63
[[Subgroup]]: 2.3.5.7


POTE generator: ~11/8 = 565.023
[[Comma list]]: 50/49, 546875/524288


Mapping: [{{val| 12 19 28 34 0 }}, {{val| 0 0 0 0 1 }}]
{{Mapping|legend=1| 16 0 37 45 | 0 1 0 0 }}


POTE generator: ~11/8 = 565.023
[[Optimal tuning]]s:  
* [[WE]]: ~128/125 = 75.0539{{c}}, ~3/2 = 701.0578{{c}} (~525/512 = 25.5726{{c}})
: [[error map]]: {{val| 0.000 0.000 -11.314 +6.174 }}
* [[CWE]]: ~128/125 = 75.0000{{c}}, ~3/2 = 700.8957{{c}} (~525/512 = 25.8957{{c}})
: error map: {{val| 0.000 -1.401 -11.314 +6.174 }}


{{Val list|legend=1| 12, 24d, 36d }}
{{Optimal ET sequence|legend=1| 16, 32, 48 }}


Badness: 0.030536
[[Badness]] (Sintel): 6.73
 
== Vigintiduo ==


=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 50/49, 64/63, 245/243
Comma list: 50/49, 385/384, 1331/1323
 
POTE generator: ~11/8 = 557.563
 
Mapping: [{{val| 22 35 51 62 0 }}, {{val| 0 0 0 0 1 }}]
 
POTE generator: ~11/8 = 557.563
 
{{Val list|legend=1| 22, 66de, 88bde, 110bd, 198bcdde }}
 
Badness: 0.0484
 
== Vigin ==
 
Subgroup: 2.3.5.7.11.13


Comma list: 50/49, 55/54, 64/63, 99/98
Mapping: {{mapping| 16 0 37 45 30 | 0 1 0 0 1 }}


Mapping: [{{val| 22 35 51 62 76 0 }}, {{val| 0 0 0 0 0 1 }}]
Optimal tunings:  
* WE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.7810{{c}} (~45/44 = 25.3476{{c}})
* CWE: ~22/21 = 75.0000{{c}}, ~3/2 = 700.6780{{c}} (~45/44 = 25.6780{{c}})


POTE generator: ~13/8 = 844.624
{{Optimal ET sequence|legend=0| 16, 32, 48 }}


{{Val list|legend=1| 22, 44 }}
Badness (Sintel): 3.07


Badness: 0.0298
== Notes ==


[[Category:Regular temperament theory]]
[[Category:Temperament clans]]
[[Category:Temperament clan]]
[[Category:Pages with mostly numerical content]]
[[Category:Jubilismic clan| ]] <!-- main article -->
[[Category:Jubilismic clan| ]] <!-- main article -->
[[Category:Jubilismic| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]

Latest revision as of 12:38, 21 August 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The jubilismic clan tempers out the jubilisma, 50/49, which means 7/5 and 10/7 are both equated to the 600-cent tritone and the octave is divided in two.

Jubilic

The head of this clan, jubilic, is generated by ~5/4. That and a semioctave give ~7/4. As such, a reasonable tuning would tune the 5/4 flat and 7/4 sharp.

Subgroup: 2.5.7

Comma list: 50/49

Sval mapping[2 0 1], 0 1 1]]

sval mapping generators: ~7/5, ~5

Gencom mapping[2 0 0 1], 0 0 1 1]]

Optimal tunings:

  • WE: ~7/5 = 599.6673 ¢, ~5/4 = 380.6287 ¢ (~8/7 = 219.0386 ¢)
error map: -0.665 -7.016 +10.139]
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 380.0086 ¢ (~8/7 = 219.9914 ¢)
error map: 0.000 -6.305 +11.183]

Optimal ET sequence2, 4, 6, 16, 22, 60d

Badness (Sintel): 0.140

Overview to extensions

Lemba finds the perfect fifth three steps away by tempering out 1029/1024. Astrology, five steps away by tempering out 3125/3072. Decimal, two steps away by tempering out 25/24 and 49/48. Walid merges ~5/4 and ~4/3 by tempering out 16/15.

Diminished adds 36/35 and splits the ~7/5 period in a further two. Pajara adds 64/63 and slices the ~7/4 in two, with antikythera being every other step thereof. Dubbla adds 78125/73728 and slices the ~5/4 in two. Injera adds 81/80 and slices the ~5/1 in four. Octokaidecal adds 28/27. Bipelog adds 135/128. Those splits the generator into three in various ways. Hexe adds 128/125 and slices the period in three. Hedgehog adds 250/243. Elvis adds 8505/8192. Those slice the generator in five. Comic adds 2240/2187. Crepuscular adds 4375/4374. Those slice the generator in seven. Byhearted adds 19683/19208. Bipyth adds 20480/19683. Those slice the generator in nine.

Temperaments discussed elsewhere are:

Considered below are lemba, astrology, walid, antikythera, doublewide, elvis, comic, and bipyth.

Lemba

For the 5-limit version, see Miscellaneous 5-limit temperaments #Lemba.

Lemba tempers out 1029/1024, the gamelisma, and a stack of three ~8/7 generators gives an approximate perfect fifth. It may be described as the 10 & 16 temperament; its ploidacot is diploid tricot.

Subgroup: 2.3.5.7

Comma list: 50/49, 525/512

Mapping[2 2 5 6], 0 3 -1 -1]]

mapping generators: ~7/5, ~8/7

Optimal tunings:

  • WE: ~7/5 = 601.4623 ¢, ~8/7 = 232.6544 ¢
error map: +2.925 -1.067 -11.656 +7.294]
  • CWE: ~7/5 = 600.0000 ¢, ~8/7 = 232.2655 ¢
error map: 0.000 -5.158 -18.579 -1.091]

Optimal ET sequence10, 16, 26, 36c, 62c

Badness (Sintel): 1.57

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 385/384

Mapping: [2 2 5 6 5], 0 3 -1 -1 5]]

Optimal tunings:

  • WE: ~7/5 = 601.1769 ¢, ~8/7 = 231.4273 ¢
  • CWE: ~7/5 = 600.0000 ¢, ~8/7 = 231.1781 ¢

Optimal ET sequence: 10, 16, 26

Badness (Sintel): 1.37

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 65/64, 78/77

Mapping: [2 2 5 6 5 7], 0 3 -1 -1 5 1]]

Optimal tunings:

  • WE: ~7/5 = 601.1939 ¢, ~8/7 = 231.4261 ¢
  • CWE: ~7/5 = 600.0000 ¢, ~8/7 = 231.1617 ¢

Optimal ET sequence: 10, 16, 26

Badness (Sintel): 1.05

Astrology

Astrology tempers out 3125/3072, the magic comma, and a stack of five ~5/4 generators gives an approximate harmonic 3. It may be described as the 16 & 22 temperament; its ploidacot is diploid pentacot.

Subgroup: 2.3.5.7

Comma list: 50/49, 3125/3072

Mapping[2 0 4 5], 0 5 1 1]]

mapping geenerators: ~7/5, ~5/4

Optimal tunings:

  • WE: ~7/5 = 599.6999 ¢, ~5/4 = 380.3881 ¢ (~8/7 = 219.3119 ¢)
error map: -0.600 -0.015 -7.126 +10.062]
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 380.5123 ¢ (~8/7 = 219.4877 ¢)
error map: 0.000 +0.606 -5.801 +11.686]

Optimal ET sequence6, 16, 22, 60d

Badness (Sintel): 2.09

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 121/120, 176/175

Mapping: [2 0 4 5 5], 0 5 1 1 3]]

Optimal tunings:

  • WE: ~7/5 = 600.0538 ¢, ~5/4 = 380.5640 ¢ (~8/7 = 219.4897 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 380.5419 ¢ (~8/7 = 219.4581 ¢)

Optimal ET sequence: 6, 16, 22

Badness (Sintel): 1.29

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 65/64, 78/77, 121/120

Mapping: [2 0 4 5 5 8], 0 5 1 1 3 -1]]

Optimal tunings:

  • WE: ~7/5 = 600.7886 ¢, ~5/4 = 380.2857 ¢ (~8/7 = 220.5028 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 379.9119 ¢ (~8/7 = 220.0881 ¢)

Optimal ET sequence: 6, 16, 22, 38f

Badness (Sintel): 1.42

Music

Horoscope

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 66/65, 105/104, 121/120

Mapping: [2 0 4 5 5 3], 0 5 1 1 3 7]]

Optimal tunings:

  • WE: ~7/5 = 599.8927 ¢, ~5/4 = 379.7688 ¢ (~8/7 = 220.1239 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~5/4 = 379.8117 ¢ (~8/7 = 220.1883 ¢)

Optimal ET sequence: 6f, 16, 22f, 38

Badness (Sintel): 1.46

Walid

This low-accuracy extension tempers out 16/15, so the perfect fifth stands in for ~8/5 as in father. Its ploidacot is diploid monocot.

Subgroup: 2.3.5.7

Comma list: 16/15, 50/49

Mapping[2 0 8 9], 0 1 -1 -1]]

mapping generators: ~7/5, ~3

Optimal tunings:

  • WE: ~7/5 = 589.0384 ¢, ~3/2 = 735.7242 ¢ (~15/14 = 146.6857 ¢)
error map: -21.923 +11.846 +12.193 +18.719]
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 750.4026 ¢ (~15/14 = 150.4026 ¢)
error map: 0.000 +48.448 +63.284 +80.771]

Optimal ET sequence2, 6, 8d

Badness (Sintel): 1.24

11-limit

Subgroup: 2.3.5.7.11

Comma list: 16/15, 22/21, 50/49

Mapping: [2 0 8 9 7], 0 1 -1 -1 0]]

Optimal tunings:

  • WE: ~7/5 = 589.7684 ¢, ~3/2 = 736.9708 ¢ (~12/11 = 147.2023 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 750.5221 ¢ (~12/11 = 150.5221 ¢)

Optimal ET sequence: 2, 6, 8d

Badness (Sintel): 0.965

Antikythera

Named by Gene Ward Smith in 2011[1], antikythera is every other step of pajara.

Subgroup: 2.9.5.7

Comma list: 50/49, 64/63

Sval mapping[2 0 11 12], 0 1 -1 -1]]

mapping generators: ~7/5, ~9

Gencom mapping[2 3 5 6], 0 1/2 -1 -1]]

gencom: [7/5 8/7; 50/49 64/63]

Optimal tunings:

  • WE: ~7/5 = 598.8483 ¢, ~9/8 = 213.6844 ¢
error map: -2.303 +2.864 -5.756 +10.580]
  • CWE: ~7/5 = 600.0000 ¢, ~9/8 = 214.6875 ¢
error map: 0.000 +10.778 -1.001 +16.487]

Optimal ET sequence2, 4, 6, 16, 22, 28

Badness (Sintel): 0.253

Doublewide

For the 5-limit version, see Superpyth–22 equivalence continuum #Doublewide (5-limit).

Doublewide is generated by a sharply tuned ~6/5 minor third, four of which and a semi-octave period give the 3rd harmonic. It may be described as the 22 & 26 temperament; its ploidacot is diploid alpha-tetracot. An 11-limit extension is immediately available by identifying two generator steps as ~16/11. 48edo makes for an excellent tuning.

Subgroup: 2.3.5.7

Comma list: 50/49, 875/864

Mapping[2 1 3 4], 0 4 3 3]]

mapping generators: ~7/5, ~6/5

Optimal tunings:

  • WE: ~7/5 = 600.0365 ¢, ~6/5 = 325.7389 ¢ (~7/6 = 274.2975 ¢)
error map: -2.303 +2.864 -5.756 +10.580]
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 325.7353 ¢ (~7/6 = 274.2647 ¢)
error map: 0.000 +10.778 -1.001 +16.487]

Optimal ET sequence4, 14bd, 18, 22, 48

Badness (Sintel): 1.10

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 385/384

Mapping: [2 1 3 4 8], 0 4 3 3 -2]]

Optimal tunings:

  • WE: ~7/5 = 600.1818 ¢, ~6/5 = 325.6434 ¢ (~7/6 = 274.5384 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 325.5854 ¢ (~7/6 = 274.4146 ¢)

Optimal ET sequence: 4, 18, 22, 48

Badness (Sintel): 1.06

Fleetwood

Subgroup: 2.3.5.7.11

Comma list: 50/49, 55/54, 176/175

Mapping: [2 1 3 4 2], 0 4 3 3 9]]

Optimal tunings:

  • WE: ~7/5 = 599.6049 ¢, ~6/5 = 326.8229 ¢ (~7/6 = 272.7819 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 326.8890 ¢ (~7/6 = 273.1110 ¢)

Optimal ET sequence: 4e, …, 18e, 22

Badness (Sintel): 1.16

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 55/54, 65/63, 176/175

Mapping: [2 1 3 4 2 3], 0 4 3 3 9 8]]

Optimal tunings:

  • WE: ~7/5 = 599.5482 ¢, ~6/5 = 327.5939 ¢ (~7/6 = 271.9543 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 327.6706 ¢ (~7/6 = 272.3294 ¢)

Optimal ET sequence: 4ef, …, 18e, 22

Badness (Sintel): 1.32

Cavalier

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 875/864

Mapping: [2 1 3 4 1], 0 4 3 3 11]]

Optimal tunings:

  • WE: ~7/5 = 600.9467 ¢, ~6/5 = 323.9369 ¢ (~7/6 = 277.0098 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 323.7272 ¢ (~7/6 = 276.2728 ¢)

Optimal ET sequence: 4e, 22e, 26

Badness (Sintel): 1.75

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 78/77, 325/324

Mapping: [2 1 3 4 1 2], 0 4 3 3 11 10]]

Optimal tunings:

  • WE: ~7/5 = 600.9537 ¢, ~6/5 = 323.9097 ¢ (~7/6 = 277.0440 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~6/5 = 323.6876 ¢ (~7/6 = 276.3124 ¢)

Optimal ET sequence: 4ef, 22ef, 26

Badness (Sintel): 1.45

Elvis

For the 5-limit version, see Miscellaneous 5-limit temperaments #Elvis.

Elvis is generated by a ptolemaic diminished fifth, tuned sharp such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. 26edo makes for an obvious tuning.

Subgroup: 2.3.5.7

Comma list: 50/49, 8505/8192

Mapping[2 1 10 11], 0 2 -5 -5]]

mapping generators: ~7/5, ~64/45

Optimal tunings:

  • WE: ~7/5 = 601.6846 ¢, ~64/45 = 648.0937 ¢ (~64/63 = 46.4091 ¢)
error map: +3.369 -4.083 -9.936 +9.236]
  • CWE: ~7/5 = 600.0000 ¢, ~64/45 = 646.0539 ¢ (~64/63 = 46.0539 ¢)
error map: 0.000 -9.847 -16.583 +0.904]

Optimal ET sequence2, 24c, 26

Badness (Sintel): 3.58

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 50/49, 1344/1331

Mapping: [2 1 10 11 8], 0 2 -5 -5 -1]]

Optimal tunings:

  • WE: ~7/5 = 601.2186 ¢, ~16/11 = 647.4300 ¢ (~56/55 = 46.2114 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~16/11 = 645.9681 ¢ (~56/55 = 45.9681 ¢)

Optimal ET sequence: 2, 24c, 26

Badness (Sintel): 2.09

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 45/44, 50/49, 78/77, 1053/1024

Mapping: [2 1 10 11 8 16], 0 2 -5 -5 -1 -8]]

Optimal tunings:

  • WE: ~7/5 = 601.2206 ¢, ~16/11 = 647.4219 ¢ (~56/55 = 46.2013 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~16/11 = 645.9362 ¢ (~56/55 = 45.9362 ¢)

Optimal ET sequence: 2f, 24cf, 26

Badness (Sintel): 1.82

Comic

For the 5-limit version, see Superpyth–22 equivalence continuum #Comic (5-limit).

Comic is generated by a grave fifth, tuned flat such that two generators and a semi-octave period give the 3rd harmonic. Its ploidacot is diploid alpha-dicot. 22edo makes for an obvious tuning.

Subgroup: 2.3.5.7

Comma list: 50/49, 2240/2187

Mapping[2 1 -3 -2], 0 2 7 7]]

mapping generators: ~7/5, ~40/27

Optimal tunings:

  • WE: ~7/5 = 598.9554 ¢, ~40/27 = 653.5596 ¢ (~28/27 = 54.6042 ¢)
error map: +3.369 -4.083 -9.936 +9.236]
  • CWE: ~7/5 = 600.0000 ¢, ~40/27 = 654.3329 ¢ (~28/27 = 54.3329 ¢)
error map: 0.000 -9.847 -16.583 +0.904]

Optimal ET sequence2cd, …, 20cd, 22

Badness (Sintel): 2.14

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 99/98, 2662/2625

Mapping: [2 1 -3 -2 -4], 0 2 7 7 10]]

Optimal tunings:

  • WE: ~7/5 = 598.8161 ¢, ~22/15 = 653.8909 ¢ (~28/27 = 55.0747 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~22/15 = 654.7898 ¢ (~28/27 = 54.7898 ¢)

Optimal ET sequence: 2cde, …, 20cde, 22

Badness (Sintel): 1.49

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 50/49, 65/63, 99/98, 968/945

Mapping: [2 1 -3 -2 -4 3], 0 2 7 7 10 4]]

Optimal tunings:

  • WE: ~7/5 = 600.1030 ¢, ~22/15 = 654.5470 ¢ (~28/27 = 54.4440 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~22/15 = 654.4665 ¢ (~28/27 = 54.4665 ¢)

Optimal ET sequence: 2cde, 20cde, 22

Badness (Sintel): 1.71

Bipyth

Bipyth tempers out the 5-limit superpyth comma, 20480/19683, making it an alternative extension of 5-limit superpyth. Its ploidacot is diploid monocot.

Subgroup: 2.3.5.7

Comma list: 50/49, 20480/19683

Mapping[2 0 -24 -23], 0 1 9 9]]

mapping generators: ~7/5, ~3

Optimal tunings:

  • WE: ~7/5 = 598.7533 ¢, ~3/2 = 707.9630 ¢ (~15/14 = 109.2098 ¢)
error map: +3.369 -4.083 -9.936 +9.236]
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 709.1579 ¢ (~15/14 = 109.1579 ¢)
error map: 0.000 -9.847 -16.583 +0.904]

Optimal ET sequence10cd, 12cd, 22

Badness (Sintel): 4.18

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 121/120, 896/891

Mapping: [2 0 -24 -23 -9], 0 1 9 9 5]]

Optimal tunings:

  • WE: ~7/5 = 599.2296 ¢, ~3/2 = 708.3992 ¢ (~15/14 = 109.1697 ¢)
  • CWE: ~7/5 = 600.0000 ¢, ~3/2 = 709.1395 ¢ (~15/14 = 109.1395 ¢)

Optimal ET sequence: 10cd, 12cde, 22

Badness (Sintel): 2.34

Sedecic

Sedecic has 1/16-octave period and may be thought of as 16edo with an independent generator for prime 3. Its ploidacot is 16-ploid monocot.

Subgroup: 2.3.5.7

Comma list: 50/49, 546875/524288

Mapping[16 0 37 45], 0 1 0 0]]

Optimal tunings:

  • WE: ~128/125 = 75.0539 ¢, ~3/2 = 701.0578 ¢ (~525/512 = 25.5726 ¢)
error map: 0.000 0.000 -11.314 +6.174]
  • CWE: ~128/125 = 75.0000 ¢, ~3/2 = 700.8957 ¢ (~525/512 = 25.8957 ¢)
error map: 0.000 -1.401 -11.314 +6.174]

Optimal ET sequence16, 32, 48

Badness (Sintel): 6.73

11-limit

Subgroup: 2.3.5.7.11

Comma list: 50/49, 385/384, 1331/1323

Mapping: [16 0 37 45 30], 0 1 0 0 1]]

Optimal tunings:

  • WE: ~22/21 = 75.0000 ¢, ~3/2 = 700.7810 ¢ (~45/44 = 25.3476 ¢)
  • CWE: ~22/21 = 75.0000 ¢, ~3/2 = 700.6780 ¢ (~45/44 = 25.6780 ¢)

Optimal ET sequence: 16, 32, 48

Badness (Sintel): 3.07

Notes