400edo: Difference between revisions
Tristanbay (talk | contribs) →Subsets and supersets: Added 1600edo and 2000edo as notable 400edo supersets Tags: Mobile edit Mobile web edit |
|||
(40 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET | {{Infobox ET}} | ||
{{ED intro}} | |||
}} | |||
== Theory == | == Theory == | ||
400edo is | 400edo is a strong 17- and 19-limit system, [[consistency|distinctly and purely consistent]] to the [[21-odd-limit]]. It shares its excellent [[harmonic]] [[3/1|3]] with [[200edo]], which is a semiconvergent, while correcting the higher harmonics to near-just qualities. | ||
As an equal temperament, it [[tempering out|tempers out]] the unidecma, {{monzo| -7 22 -12 }}, and the quintosec comma, {{monzo| 47 -15 -10 }}, in the [[5-limit]]; [[2401/2400]], 1959552/1953125, and 14348907/14336000 in the [[7-limit]]; [[5632/5625]], [[9801/9800]], 117649/117612, and [[131072/130977]] in the [[11-limit]]; [[676/675]], [[1001/1000]], [[1716/1715]], [[2080/2079]], [[4096/4095]], [[4225/4224]] and 39366/39325 in the [[13-limit]], [[support]]ing the [[decoid]] temperament and the [[quinmite]] temperament. It tempers out [[936/935]], [[1156/1155]], [[2058/2057]], [[2601/2600]], [[4914/4913]] and [[24576/24565]] in the 17-limit, and 969/968, [[1216/1215]], [[1521/1520]], and [[1729/1728]] in the 19-limit. | |||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|400|columns=13}} | {{Harmonics in equal|400|columns=13}} | ||
{{Harmonics in equal|400|columns=13|start=14|collapsed=true|title=Approximation of prime harmonics in 400edo (continued)}} | |||
=== Subsets and supersets === | |||
Since 400 factors into 2<sup>4</sup> × 5<sup>2</sup>, 400edo has subset edos {{EDOs| 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, and 200 }}. | |||
Of edos that are a multiple of 400, {{EDOs| 1600 and 2000}} are notable for their high consistency limits, as [[Interval size measure|interval size measures]], and perhaps as ways of tuning various temperaments. | |||
== Selected intervals == | == Interval table == | ||
=== All intervals === | |||
See [[Table of 400edo intervals]]. | |||
=== Selected intervals === | |||
{| class="wikitable center-1" | {| class="wikitable center-1" | ||
| | |- | ||
! Step | ! Step | ||
! Eliora's | ! Eliora's naming system | ||
! Associated ratio | ! Associated ratio | ||
|- | |- | ||
Line 35: | Line 37: | ||
| 33 | | 33 | ||
| small septendecimal semitone | | small septendecimal semitone | ||
| [[18/17]] | | [[18/17]], [[55/52]] | ||
|- | |- | ||
| 35 | | 35 | ||
Line 59: | Line 61: | ||
| 231 | | 231 | ||
| Gregorian leap week fifth | | Gregorian leap week fifth | ||
| | | 525/352, 3/2 / (81/80)^(5/12) | ||
|- | |- | ||
| 234 | | 234 | ||
Line 80: | Line 82: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve stretch (¢) | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning error | ! colspan="2" | Tuning error | ||
|- | |- | ||
Line 91: | Line 94: | ||
| 2.3.5 | | 2.3.5 | ||
| {{monzo| -7 22 -12 }}, {{monzo| 47 -15 -10 }} | | {{monzo| -7 22 -12 }}, {{monzo| 47 -15 -10 }} | ||
| | | {{mapping| 400 634 929 }} | ||
| | | −0.1080 | ||
| 0.1331 | | 0.1331 | ||
| 4.44 | | 4.44 | ||
Line 98: | Line 101: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 2401/2400, 1959552/1953125, 14348907/14336000 | | 2401/2400, 1959552/1953125, 14348907/14336000 | ||
| | | {{mapping| 400 634 929 1123 }} | ||
| | | −0.0965 | ||
| 0.1170 | | 0.1170 | ||
| 3.90 | | 3.90 | ||
Line 105: | Line 108: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 2401/2400, 5632/5625, 9801/9800, 46656/46585 | | 2401/2400, 5632/5625, 9801/9800, 46656/46585 | ||
| | | {{mapping| 400 634 929 1123 1384 }} | ||
| | | −0.1166 | ||
| 0.1121 | | 0.1121 | ||
| 3.74 | | 3.74 | ||
Line 112: | Line 115: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 676/675, 1001/1000, 1716/1715, 4096/4095, 39366/39325 | | 676/675, 1001/1000, 1716/1715, 4096/4095, 39366/39325 | ||
| | | {{mapping| 400 634 929 1123 1384 1480 }} | ||
| | | −0.0734 | ||
| 0.1407 | | 0.1407 | ||
| 4.69 | | 4.69 | ||
Line 119: | Line 122: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 4096/4095 | | 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 4096/4095 | ||
| | | {{mapping| 400 634 929 1123 1384 1480 1635 }} | ||
| | | −0.0645 | ||
| 0.1321 | | 0.1321 | ||
| 4.40 | | 4.40 | ||
Line 126: | Line 129: | ||
| 2.3.5.7.11.13.17.19 | | 2.3.5.7.11.13.17.19 | ||
| 676/675, 936/935, 969/968, 1001/1000, 1156/1155, 1216/1215, 1716/1715 | | 676/675, 936/935, 969/968, 1001/1000, 1156/1155, 1216/1215, 1716/1715 | ||
| | | {{mapping| 400 634 929 1123 1384 1480 1635 1699 }} | ||
| | | −0.0413 | ||
| 0.1380 | | 0.1380 | ||
| 4.60 | | 4.60 | ||
|} | |} | ||
* 400et has lower absolute errors than any previous equal temperaments in the 17- and 19-limit. It is the first to beat [[354edo|354]] in the 17-limit, and [[311edo|311]] in the 19-limit; it is bettered by [[422edo|422]] in either subgroup. | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per | |- | ||
! Generator | ! Periods<br />per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! | ! Associated<br />ratio* | ||
! Temperament | |||
|- | |- | ||
| 1 | | 1 | ||
Line 147: | Line 152: | ||
| [[Monzismic]] | | [[Monzismic]] | ||
|- | |- | ||
|1 | | 1 | ||
|33\400 | | 33\400 | ||
|99.00 | | 99.00 | ||
|18/17 | | 18/17 | ||
|Gregorian leap day | | [[Gregorian leap day]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 163: | Line 168: | ||
| 459.00 | | 459.00 | ||
| 125/96 | | 125/96 | ||
| [[ | | [[Majvamic]] | ||
|- | |||
| 1 | |||
| 169\400 | |||
| 507.00 | |||
| 525/352 | |||
| [[Gregorian leap week]] | |||
|- | |- | ||
| 2 | | 2 | ||
Line 172: | Line 183: | ||
|- | |- | ||
| 5 | | 5 | ||
| 123\400<br>(37\400) | | 123\400<br />(37\400) | ||
| 369.00<br>(111.00) | | 369.00<br />(111.00) | ||
| | | 1024/891<br />(16/15) | ||
| [[ | | [[Quintosec]] | ||
|- | |- | ||
| 10 | | 10 | ||
| 83\400<br>(3\400) | | 83\400<br />(3\400) | ||
| 249.00<br>(9.00) | | 249.00<br />(9.00) | ||
| 15/13<br>(176/175) | | 15/13<br />(176/175) | ||
| [[Decoid]] | | [[Decoid]] | ||
|- | |||
| 80 | |||
| 166\400<br />(1\400) | |||
| 498.00<br />(3.00) | |||
| 4/3<br />(245/243) | |||
| [[Octogintic]] | |||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | == Scales == | ||
Line 188: | Line 206: | ||
* [[Huntington10]] | * [[Huntington10]] | ||
* [[Huntington17]] | * [[Huntington17]] | ||
* | * Monzismic[29] | ||
* | * GregorianLeapWeek[71] | ||
* ISOWeek[71] | |||
* GregorianLeapDay[97] | |||
== Music == | |||
; [[Eliora]] | |||
* [https://www.youtube.com/watch?v=av_RLK68ZUY ''Etude in Monzismic''] (2023) | |||
; [[Francium]] | |||
* [https://www.youtube.com/watch?v=aTo2zfCWP9M ''thank you all''] (2023) | |||
[[Category: | [[Category:Listen]] |
Latest revision as of 12:33, 14 August 2025
← 399edo | 400edo | 401edo → |
400 equal divisions of the octave (abbreviated 400edo or 400ed2), also called 400-tone equal temperament (400tet) or 400 equal temperament (400et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 400 equal parts of exactly 3 ¢ each. Each step represents a frequency ratio of 21/400, or the 400th root of 2.
Theory
400edo is a strong 17- and 19-limit system, distinctly and purely consistent to the 21-odd-limit. It shares its excellent harmonic 3 with 200edo, which is a semiconvergent, while correcting the higher harmonics to near-just qualities.
As an equal temperament, it tempers out the unidecma, [-7 22 -12⟩, and the quintosec comma, [47 -15 -10⟩, in the 5-limit; 2401/2400, 1959552/1953125, and 14348907/14336000 in the 7-limit; 5632/5625, 9801/9800, 117649/117612, and 131072/130977 in the 11-limit; 676/675, 1001/1000, 1716/1715, 2080/2079, 4096/4095, 4225/4224 and 39366/39325 in the 13-limit, supporting the decoid temperament and the quinmite temperament. It tempers out 936/935, 1156/1155, 2058/2057, 2601/2600, 4914/4913 and 24576/24565 in the 17-limit, and 969/968, 1216/1215, 1521/1520, and 1729/1728 in the 19-limit.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.04 | +0.69 | +0.17 | +0.68 | -0.53 | +0.04 | -0.51 | -1.27 | -0.58 | +0.96 | +0.66 | -0.06 |
Relative (%) | +0.0 | +1.5 | +22.9 | +5.8 | +22.7 | -17.6 | +1.5 | -17.1 | -42.5 | -19.2 | +32.1 | +21.9 | -2.1 | |
Steps (reduced) |
400 (0) |
634 (234) |
929 (129) |
1123 (323) |
1384 (184) |
1480 (280) |
1635 (35) |
1699 (99) |
1809 (209) |
1943 (343) |
1982 (382) |
2084 (84) |
2143 (143) |
Harmonic | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | 83 | 89 | 97 | 101 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.48 | +0.49 | -0.50 | -0.17 | -0.88 | -1.31 | +0.30 | +0.21 | +1.46 | -0.05 | -0.88 | +0.10 | -0.85 |
Relative (%) | +49.4 | +16.4 | -16.8 | -5.7 | -29.5 | -43.6 | +10.1 | +7.0 | +48.8 | -1.6 | -29.3 | +3.5 | -28.5 | |
Steps (reduced) |
2171 (171) |
2222 (222) |
2291 (291) |
2353 (353) |
2372 (372) |
2426 (26) |
2460 (60) |
2476 (76) |
2522 (122) |
2550 (150) |
2590 (190) |
2640 (240) |
2663 (263) |
Subsets and supersets
Since 400 factors into 24 × 52, 400edo has subset edos 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, and 200.
Of edos that are a multiple of 400, 1600 and 2000 are notable for their high consistency limits, as interval size measures, and perhaps as ways of tuning various temperaments.
Interval table
All intervals
See Table of 400edo intervals.
Selected intervals
Step | Eliora's naming system | Associated ratio |
---|---|---|
0 | unison | 1/1 |
28 | 5/12-meantone semitone | 6561/6250 |
33 | small septendecimal semitone | 18/17, 55/52 |
35 | septendecimal semitone | 17/16 |
37 | diatonic semitone | 16/15 |
99 | undevicesimal minor third | 19/16 |
100 | symmetric minor third | |
200 | symmetric tritone | 99/70, 140/99 |
231 | Gregorian leap week fifth | 525/352, 3/2 / (81/80)^(5/12) |
234 | perfect fifth | 3/2 |
323 | harmonic seventh | 7/4 |
372 | 5/12-meantone seventh | 12500/6561 |
400 | octave | 2/1 |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | [-7 22 -12⟩, [47 -15 -10⟩ | [⟨400 634 929]] | −0.1080 | 0.1331 | 4.44 |
2.3.5.7 | 2401/2400, 1959552/1953125, 14348907/14336000 | [⟨400 634 929 1123]] | −0.0965 | 0.1170 | 3.90 |
2.3.5.7.11 | 2401/2400, 5632/5625, 9801/9800, 46656/46585 | [⟨400 634 929 1123 1384]] | −0.1166 | 0.1121 | 3.74 |
2.3.5.7.11.13 | 676/675, 1001/1000, 1716/1715, 4096/4095, 39366/39325 | [⟨400 634 929 1123 1384 1480]] | −0.0734 | 0.1407 | 4.69 |
2.3.5.7.11.13.17 | 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 4096/4095 | [⟨400 634 929 1123 1384 1480 1635]] | −0.0645 | 0.1321 | 4.40 |
2.3.5.7.11.13.17.19 | 676/675, 936/935, 969/968, 1001/1000, 1156/1155, 1216/1215, 1716/1715 | [⟨400 634 929 1123 1384 1480 1635 1699]] | −0.0413 | 0.1380 | 4.60 |
- 400et has lower absolute errors than any previous equal temperaments in the 17- and 19-limit. It is the first to beat 354 in the 17-limit, and 311 in the 19-limit; it is bettered by 422 in either subgroup.
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperament |
---|---|---|---|---|
1 | 83\400 | 249.00 | [-26 18 -1⟩ | Monzismic |
1 | 33\400 | 99.00 | 18/17 | Gregorian leap day |
1 | 101\400 | 303.00 | 25/21 | Quinmite |
1 | 153\400 | 459.00 | 125/96 | Majvamic |
1 | 169\400 | 507.00 | 525/352 | Gregorian leap week |
2 | 61\400 | 183.00 | 10/9 | Unidecmic |
5 | 123\400 (37\400) |
369.00 (111.00) |
1024/891 (16/15) |
Quintosec |
10 | 83\400 (3\400) |
249.00 (9.00) |
15/13 (176/175) |
Decoid |
80 | 166\400 (1\400) |
498.00 (3.00) |
4/3 (245/243) |
Octogintic |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
Scales
- Huntington7
- Huntington10
- Huntington17
- Monzismic[29]
- GregorianLeapWeek[71]
- ISOWeek[71]
- GregorianLeapDay[97]
Music
- Etude in Monzismic (2023)
- thank you all (2023)