Tetracot: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
Tags: Mobile edit Mobile web edit
mNo edit summary
 
(23 intermediate revisions by 7 users not shown)
Line 1: Line 1:
'''Tetracot''', in this article, is the rank-2 regular temperament for the 2.3.5.11.13 subgroup defined by tempering out [[100/99]], [[144/143]], and [[243/242]].
{{interwiki
| de = Tetracot
| en = Tetracot
| es =
| ja =
}}
'''Tetracot''', in this article, is the rank-2 [[regular temperament]] in the 2.3.5.11.13 [[subgroup]] [[generator|generated]] by a "sub-major" second of about 174–178{{cent}} which represents both [[10/9]] and [[11/10]]. It is so named because the generator is a quarter of fifth: four such generators make a perfect fifth which approximates [[3/2]], which cannot occur in [[12edo]], resulting in [[100/99]], [[144/143]], and [[243/242]] being [[tempering out|tempered out]]. This is in contrast to [[meantone]], where 10/9 is tuned sharper than or equal to just in order to be equated with [[9/8]].


It can be seen as implying a rank-2 tuning which is [[Generator|generated]] by a sub-major second of about 176 cents which represents both [[10/9]] and [[11/10]]. It is so named because the generator is a quarter of fifth: four generators make a fifth which approximates [[3/2]], which cannot occur in [[12edo]]. Equal temperaments that support tetracot include {{EDOs|27, 34, and 41}} EDOs.
Tetracot has many [[extension]]s for the 7-, 11-, and 13-limit. See [[Tetracot extensions]]. Equal temperaments that support tetracot include {{EDOs| 27, 34, and 41 }}.


Tetracot has many extensions for 7, 11 and 13-limit include monkey (34&41), bunya (34d&41), modus (27e&34d) and wollemia (27e&34).
See [[Tetracot family]] or [[No-sevens subgroup temperaments#Tetracot]] for more technical data.


See [[Tetracot family]] or [[No-sevens subgroup temperaments #Tetracot]] for more technical data.
== Interval chain ==
Tetracot is considered as a [[cluster temperament]] with seven clusters of notes in an octave. The chroma interval between adjacent notes in each cluster represents [[40/39]], [[45/44]], [[55/54]], [[65/64]], [[66/65]], [[81/80]], and [[121/120]] all at once. In the following table, odd harmonics and subharmonics 1–15 are in '''bold'''.  


== Intervals ==
{| class="wikitable right-1 right-2"
{| class="wikitable right-1"
|-
|-
! Generators
! #
! Cents<sup>*</sup>
! Cents*
! Approximate ratios
! Approximate Ratios
|-
|-
| 0
| 0
| 0.00
| 0.00
| 1/1
| '''1/1'''
|-
|-
| 1
| 1
| 176.20
| 175.8
| 11/10, 10/9
| 11/10, 10/9
|-
|-
| 2
| 2
| 352.39
| 350.6
| 11/9, 16/13
| 11/9, '''16/13'''
|-
|-
| 3
| 3
| 528.59
| 527.4
| 15/11
| 15/11
|-
|-
| 4
| 4
| 704.79
| 703.3
| 3/2
| '''3/2'''
|-
|-
| 5
| 5
| 880.98
| 879.1
| 5/3
| 5/3
|-
|-
| 6
| 6
| 1057.18
| 1054.9
| 11/6, 24/13
| 11/6, 24/13
|-
|-
| 7
| 7
| 33.38
| 30.7
| 55/54, 45/44, 40/39
| 55/54, 45/44, 40/39
|-
|-
| 8
| 8
| 209.57
| 206.5
| 9/8
| '''9/8'''
|-
|-
| 9
| 9
| 385.77
| 382.3
| 5/4
| '''5/4'''
|-
|-
| 10
| 10
| 561.96
| 558.2
| 11/8, 18/13
| '''11/8''', 18/13
|-
|-
| 11
| 11
| 738.16
| 734.0
| 20/13
| 20/13
|-
|-
| 12
| 12
| 914.36
| 909.8
| 22/13
| 22/13
|-
|-
| 13
| 13
| 1090.55
| 1085.6
| 15/8
| '''15/8'''
|-
|-
| 14
| 14
| 66.75
| 61.4
| 33/32, 27/26, 25/24
| 33/32, 27/26, 25/24
|-
|-
| 15
| 15
| 242.95
| 237.2
| 15/13
| 15/13
|}
|}
: <sup>*</sup> in 2.3.5.11.13 POTE tuning
<nowiki />* In 2.3.5.11.13 subgroup CTE tuning


=== Monkey ===
== Scales ==
{| class="wikitable right-1"
* [[Tetracot7]] – [[6L&nbsp;1s]] scale
* [[Tetracot13]] – improper [[7L&nbsp;6s]]
* [[Tetracot20]] – improper [[7L&nbsp;13s]]
 
== Tunings ==
=== Tuning spectrum ===
{| class="wikitable center-all left-4"
|-
|-
! Generators
! Edo<br />Generator
! Cents<sup>*</sup>
! [[Eigenmonzo|Eigenmonzo<br />(Unchanged-interval)]]*
! Approximate ratios
! Generator (¢)
! Comments
|-
|-
| 0
|  
| 0.00
| 11/10
| 1/1
| 165.004
|-
| 1
| 175.62
| 11/10, 10/9
|-
| 2
| 351.24
| 11/9, 16/13
|-
| 3
| 526.87
| 15/11
|-
| 4
| 702.49
| 3/2
|-
| 5
| 878.11
| 5/3
|-
| 6
| 1053.73
| 11/6, 24/13
|-
| 7
| 29.36
|  
|  
|-
|-
| 8
| 1\7
| 204.98
| 9/8
|-
| 9
| 380.60
| 5/4
|-
| 10
| 556.22
| 11/8, 18/13
|-
| 11
| 731.85
| 20/13
|-
| 12
| 907.47
| 22/13
|-
| 13
| 1083.09
| 13/7, 15/8
|-
| 14
| 58.71
|  
|  
| 171.429
| Lower bound of 2.3.5.11 subgroup 11-odd-limit, <br />2.3.5.11.13 subgroup 13- and 15-odd-limit diamond monotone
|-
|-
| 15
| 234.34
| 8/7, 15/13
|-
| 16
| 409.96
|  
|  
|-
| 11/9
| 17
| 173.704
| 585.58
|  
|  
|-
|-
| 18
| 761.20
|  
|  
|-
| 11/6
| 19
| 174.894
| 936.83
| 12/7
|-
| 20
| 1112.45
|  
|  
|-
|-
| 21
| 7\48
| 88.07
|  
|  
|-
| 175.000
| 22
| 263.69
|  
|  
|-
|-
| 23
| 439.31
| 9/7
|-
| 24
| 614.94
| 10/7
|-
| 25
| 790.56
| 11/7
|-
| 26
| 966.18
|  
|  
| 11/8
| 175.132
| 2.3.5.11 subgroup 11-odd-limit minimax
|-
|-
| 27
| 1141.80
|  
|  
|-
| 28
| 117.43
| 15/14
|}
: <sup>*</sup> in 13-limit POTE tuning
=== Bunya ===
{| class="wikitable right-1"
|-
! Generators
! Cents<sup>*</sup>
! Approximate ratios
|-
| 0
| 0.00
| 1/1
|-
| 1
| 175.89
| 11/10, 10/9
|-
| 2
| 351.77
| 11/9, 16/13
|-
| 3
| 527.66
| 15/11
|-
| 4
| 703.54
| 3/2
| 3/2
| 175.489
|
|-
|-
| 5
| 6\41
| 879.43
|  
| 5/3
| 175.610
|  
|-
|-
| 6
|  
| 1055.31
| 13/11
| 11/6, 24/13
| 175.899
| 2.3.5.11.13 subgroup 13- and 15-odd-limit minimax
|-
|-
| 7
|  
| 31.20
| 15/8
| 56/55, 55/54, 45/44, 40/39
| 176.021
|  
|-
|-
| 8
|  
| 207.09
| 9/8
|-
| 9
| 382.97
| 5/4
| 5/4
| 176.257
| 5-odd-limit and 5-limit 9-odd-limit minimax
|-
|-
| 10
|  
| 558.86
| 13/9
| 11/8, 18/13
| 176.338
|  
|-
|-
| 11
| 5\34
| 734.74
|  
| 20/13
| 176.471
|  
|-
|-
| 12
|  
| 910.63
| 22/13
|-
| 13
| 1086.52
| 28/15, 15/8
|-
| 14
| 62.40
| 33/32, 28/27, 27/26, 25/24
|-
| 15
| 238.29
| 15/13
| 15/13
| 176.516
|
|-
|-
| 16
|  
| 414.17
| 5/3
| 14/11
| 176.872
|  
|-
|-
| 17
|  
| 590.06
| 13/10
| 7/5
| 176.890
|-
| 18
| 765.94
| 14/9
|-
| 19
| 941.83
|  
|  
|-
|-
| 20
| 1117.72
| 21/11
|-
| 21
| 93.60
| 21/20
|-
| 22
| 269.49
| 7/6
|-
| 23
| 445.37
|  
|  
|-
| 13/12
| 24
| 176.905
| 621.26
|  
|  
|-
|-
| 25
| 4\27
| 797.15
|  
|  
| 177.778
| Upper bound of 2.3.5.11.13 subgroup 13- and 15-odd-limit diamond monotone
|-
|-
| 26
| 973.03
| 7/4
|-
| 27
| 1148.92
| 35/18
|-
| 28
| 124.80
| 14/13
|}
: <sup>*</sup> in 13-limit POTE tuning
=== Modus ===
{| class="wikitable right-1"
|-
! Generators
! Cents<sup>*</sup>
! Approximate ratios
|-
| 0
| 0.00
| 1/1
|-
| 1
| 176.95
| 11/10, 10/9
|-
| 2
| 353.91
| 11/9, 16/13
|-
| 3
| 530.86
| 15/11
|-
| 4
| 707.81
| 3/2
|-
| 5
| 884.77
| 5/3
|-
| 6
| 1061.72
| 11/6, 24/13, 13/7
|-
| 7
| 38.67
| 55/54, 45/44, 40/39, 36/35
|-
| 8
| 215.63
| 9/8, 8/7
|-
| 9
| 392.58
| 5/4
|-
| 10
| 569.53
| 11/8, 18/13
|-
| 11
| 746.49
| 20/13
|-
| 12
| 923.44
| 22/13, 12/7
|-
| 13
| 1100.39
| 15/8, 40/21
|-
| 14
| 77.35
| 27/26, 25/24, 22/21
|-
| 15
| 254.30
| 15/13
|-
| 16
| 431.25
| 9/7
|-
| 17
| 608.20
| 10/7
|-
| 18
| 785.16
| 11/7
|-
| 19
| 962.11
|  
|  
|-
| 20
| 1139.06
| 27/14
|-
| 21
| 116.02
| 15/14
|}
: <sup>*</sup> in 13-limit POTE tuning
=== Wollemia ===
{| class="wikitable right-1"
|-
! Generators
! Cents<sup>*</sup>
! Approximate ratios
|-
| 0
| 0.00
| 1/1
|-
| 1
| 177.23
| 11/10, 10/9
|-
| 2
| 354.46
| 11/9, 16/13
|-
| 3
| 531.69
| 15/11
| 15/11
|-
| 178.984
| 4
| 708.92
| 3/2
|-
| 5
| 886.16
| 5/3
|-
| 6
| 1063.39
| 11/6, 24/13, 28/15
|-
| 7
| 40.62
|  
|  
|-
|-
| 8
| 217.85
| 9/8
|-
| 9
| 395.08
| 5/4, 14/11
|-
| 10
| 572.31
| 11/8, 18/13, 7/5
|-
| 11
| 749.54
| 20/13, 14/9
|-
| 12
| 926.77
| 22/13
|-
| 13
| 1104.01
| 15/8
|-
| 14
| 81.24
|  
|  
|-
| 13/8
| 15
| 179.736
| 258.47
| 15/13, 7/6
|-
| 16
| 435.70
|  
|  
|-
|-
| 17
| 3\20
| 612.93
|  
|  
| 180.000
| Upper bound of 2.3.5.11 subgroup 11-odd-limit diamond monotone
|-
|-
| 18
| 790.16
|  
|  
|-
| 9/5
| 19
| 182.404
| 967.39
| 7/4
|-
| 20
| 1144.62
|  
|  
|-
| 21
| 121.86
| 14/13
|}
|}
: <sup>*</sup> in 13-limit POTE tuning
<nowiki />* Besides the octave


== Tuning spectra ==
== Music ==
=== Monkey ===
; [[Flora Canou]]
Gencom: [2 10/9; 100/99 105/104 144/143 243/242]
* [https://soundcloud.com/floracanou/october-dieting-plan?in=floracanou/sets/totmc-suite-vol-1 "October Dieting Plan"] from [https://soundcloud.com/floracanou/sets/totmc-suite-vol-1 ''TOTMC Suite Vol. 1''] (2023) – [[modus]] in 34edo tuning


Gencom mapping: [{{val|1 1 1 5 2 4}}, {{val|0 4 9 -15 10 -2}}]
; [[Zhea Erose]]
* [https://www.youtube.com/watch?v=xYZwye9PWSo ''Modal Studies in Tetracot''] (2021) – in 34edo tuning


{| class="wikitable center-all"
; [[Xotla]]
|-
* "Electrostat" from ''Lesser Groove'' (2020) – [https://open.spotify.com/track/5LIPr8n6uQySeLUfM11U2W Spotify] | [https://xotla.bandcamp.com/track/electrostat-tetracot-13 Bandcamp] | [https://www.youtube.com/watch?v=5SAuoyDwpgc YouTube] – ambient electro, tetracot[13] in 34edo tuning
! | [[Eigenmonzo|Eigenmonzo<br>(unchanged interval]])
! | Generator<br>(¢)
! | Comments
|-
| | 11/10
| | 165.004
| |
|-
| | 11/9
| | 173.704
| |
|-
| | 14/13
| | 174.746
| |
|-
| | 12/11
| | 174.894
| |
|-
| | 11/8
| | 175.132
| |
|-
| | 14/11
| | 175.300
| | 11-odd-limit minimax
|-
| | 8/7
| | 175.412
| |
|-
| | 7/6
| | 175.428
| |
|-
| | 9/7
| | 175.438
| |
|-
| | 4/3
| | 175.489
| |
|-
| | 15/14
| | 175.694
| |
|-
| | 7/5
| | 175.729
| | 7, 9, 13 and 15-odd-limit minimax
|-
| | 13/11
| | 175.899
| |
|-
| | 16/15
| | 176.021
| |
|-
| | 5/4
| | 176.257
| | 5-odd-limit minimax
|-
| | 18/13
| | 176.338
| |
|-
| | 15/13
| | 176.516
| |
|-
| | 6/5
| | 176.872
| |
|-
| | 13/10
| | 176.890
| |
|-
| | 13/12
| | 176.905
| |
|-
| | 15/11
| | 178.984
| |
|-
| | 16/13
| | 179.736
| |
|-
| | 10/9
| | 182.404
| |
|}
 
=== Bunya ===
Gencom: [2 10/9; 100/99 144/143 225/224 243/242]
 
Gencom mapping: [{{val|1 1 1 -1 2 4}}, {{val|0 4 9 26 10 -2}}]
 
{| class="wikitable center-all"
|-
! | [[Eigenmonzo|Eigenmonzo<br>(unchanged interval]])
! | Generator<br>(¢)
! | Comments
|-
| | 11/10
| | 165.004
| |
|-
| | 11/9
| | 173.704
| |
|-
| | 12/11
| | 174.894
| |
|-
| | 11/8
| | 175.132
| |
|-
| | 15/14
| | 175.427
| |
|-
| | 7/5
| | 175.442
| | 11-odd-limit minimax
|-
| | 4/3
| | 175.489
| |
|-
| | 8/7
| | 175.724
| |
|-
| | 7/6
| | 175.767
| | 7-odd-limit minimax
|-
| | 9/7
| | 175.829
| | 9-odd-limit minimax
|-
| | 13/11
| | 175.899
| | 13 and 15-odd-limit minimax
|-
| | 14/13
| | 176.011
| |
|-
| | 16/15
| | 176.021
| |
|-
| | 14/11
| | 176.094
| |
|-
| | 5/4
| | 176.257
| | 5-odd-limit minimax
|-
| | 18/13
| | 176.338
| |
|-
| | 15/13
| | 176.516
| |
|-
| | 6/5
| | 176.872
| |
|-
| | 13/10
| | 176.890
| |
|-
| | 13/12
| | 176.905
| |
|-
| | 15/11
| | 178.984
| |
|-
| | 16/13
| | 179.736
| |
|-
| | 10/9
| | 182.404
| |
|}
 
=== Modus ===
Gencom: [2 10/9; 64/63 78/77 100/99 144/143]
 
Gencom mapping: [{{val|1 1 1 4 2 4}}, {{val|0 4 9 -8 10 -2}}]
 
{| class="wikitable center-all"
|-
! | [[Eigenmonzo|Eigenmonzo<br>(unchanged interval]])
! | Generator<br>(¢)
! | Comments
|-
| | 11/10
| | 165.004
| |
|-
| | 11/9
| | 173.704
| |
|-
| | 12/11
| | 174.894
| |
|-
| | 11/8
| | 175.132
| |
|-
| | 4/3
| | 175.489
| |
|-
| | 13/11
| | 175.899
| |
|-
| | 16/15
| | 176.021
| |
|-
| | 5/4
| | 176.257
| | 5-odd-limit minimax
|-
| | 18/13
| | 176.338
| |
|-
| | 15/13
| | 176.516
| |
|-
| | 14/11
| | 176.805
| | 11, 13 and 15-odd-limit minimax
|-
| | 6/5
| | 176.872
| |
|-
| | 13/10
| | 176.890
| |
|-
| | 13/12
| | 176.905
| |
|-
| | 15/14
| | 177.116
| |
|-
| | 9/7
| | 177.193
| | 9-odd-limit minimax
|-
| | 7/5
| | 177.499
| | 7-odd-limit minimax
|-
| | 7/6
| | 177.761
| |
|-
| | 14/13
| | 178.617
| |
|-
| | 8/7
| | 178.897
| |
|-
| | 15/11
| | 178.984
| |
|-
| | 16/13
| | 179.736
| |
|-
| | 10/9
| | 182.404
| |
|}
 
=== Wollemia ===
Gencom: [2 10/9; 56/55 91/90 100/99 243/242]
 
Gencom mapping: [{{val|1 1 1 0 2 4}}, {{val|0 4 9 19 10 -2}}]
 
{| class="wikitable center-all"
|-
! | [[Eigenmonzo|Eigenmonzo<br>(unchanged interval]])
! | Generator<br>(¢)
! | Comments
|-
| | 11/10
| | 165.004
| |
|-
| | 11/9
| | 173.704
| |
|-
| | 12/11
| | 174.894
| |
|-
| | 11/8
| | 175.132
| |
|-
| | 4/3
| | 175.489
| |
|-
| | 13/11
| | 175.899
| |
|-
| | 16/15
| | 176.021
| |
|-
| | 5/4
| | 176.257
| | 5-odd-limit minimax
|-
| | 18/13
| | 176.338
| |
|-
| | 15/13
| | 176.516
| |
|-
| | 6/5
| | 176.872
| |
|-
| | 13/10
| | 176.890
| |
|-
| | 13/12
| | 176.905
| |
|-
| | 8/7
| | 177.307
| | 7, 9, 11, 13 and 15-odd-limit minimax
|-
| | 14/13
| | 177.538
| |
|-
| | 7/6
| | 177.791
| |
|-
| | 7/5
| | 178.251
| |
|-
| | 9/7
| | 178.629
| |
|-
| | 15/11
| | 178.984
| |
|-
| | 14/11
| | 179.723
| |
|-
| | 16/13
| | 179.736
| |
|-
| | 15/14
| | 180.093
| |
|-
| | 10/9
| | 182.404
| |
|}


[[Category:Temperaments]]
[[Category:Tetracot| ]] <!-- Main article -->
[[Category:Rank-2 temperaments]]
[[Category:Tetracot family]]
[[Category:Tetracot family]]
[[Category:Index of temperaments]]

Latest revision as of 12:07, 6 August 2025

Tetracot, in this article, is the rank-2 regular temperament in the 2.3.5.11.13 subgroup generated by a "sub-major" second of about 174–178 ¢ which represents both 10/9 and 11/10. It is so named because the generator is a quarter of fifth: four such generators make a perfect fifth which approximates 3/2, which cannot occur in 12edo, resulting in 100/99, 144/143, and 243/242 being tempered out. This is in contrast to meantone, where 10/9 is tuned sharper than or equal to just in order to be equated with 9/8.

Tetracot has many extensions for the 7-, 11-, and 13-limit. See Tetracot extensions. Equal temperaments that support tetracot include 27, 34, and 41.

See Tetracot family or No-sevens subgroup temperaments#Tetracot for more technical data.

Interval chain

Tetracot is considered as a cluster temperament with seven clusters of notes in an octave. The chroma interval between adjacent notes in each cluster represents 40/39, 45/44, 55/54, 65/64, 66/65, 81/80, and 121/120 all at once. In the following table, odd harmonics and subharmonics 1–15 are in bold.

# Cents* Approximate Ratios
0 0.00 1/1
1 175.8 11/10, 10/9
2 350.6 11/9, 16/13
3 527.4 15/11
4 703.3 3/2
5 879.1 5/3
6 1054.9 11/6, 24/13
7 30.7 55/54, 45/44, 40/39
8 206.5 9/8
9 382.3 5/4
10 558.2 11/8, 18/13
11 734.0 20/13
12 909.8 22/13
13 1085.6 15/8
14 61.4 33/32, 27/26, 25/24
15 237.2 15/13

* In 2.3.5.11.13 subgroup CTE tuning

Scales

Tunings

Tuning spectrum

Edo
Generator
Eigenmonzo
(Unchanged-interval)
*
Generator (¢) Comments
11/10 165.004
1\7 171.429 Lower bound of 2.3.5.11 subgroup 11-odd-limit,
2.3.5.11.13 subgroup 13- and 15-odd-limit diamond monotone
11/9 173.704
11/6 174.894
7\48 175.000
11/8 175.132 2.3.5.11 subgroup 11-odd-limit minimax
3/2 175.489
6\41 175.610
13/11 175.899 2.3.5.11.13 subgroup 13- and 15-odd-limit minimax
15/8 176.021
5/4 176.257 5-odd-limit and 5-limit 9-odd-limit minimax
13/9 176.338
5\34 176.471
15/13 176.516
5/3 176.872
13/10 176.890
13/12 176.905
4\27 177.778 Upper bound of 2.3.5.11.13 subgroup 13- and 15-odd-limit diamond monotone
15/11 178.984
13/8 179.736
3\20 180.000 Upper bound of 2.3.5.11 subgroup 11-odd-limit diamond monotone
9/5 182.404

* Besides the octave

Music

Flora Canou
Zhea Erose
Xotla
  • "Electrostat" from Lesser Groove (2020) – Spotify | Bandcamp | YouTube – ambient electro, tetracot[13] in 34edo tuning