Quartismic family: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Remove non-existent extensions; various corrections (e.g. meanquarter can't be extended (recte tempered) to godzilla, also those are individual temperaments not clans)
 
(14 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{todo|inline=1| discuss title | comment= This doesn't follow the definition of temperament family }}
{{Technical data page}}
 
The '''quartismic family''' is a family of [[rank-4]] temperaments tempers out the [[quartisma]] the unnoticeable comma with the ratio 117440512/117406179, and a monzo of {{monzo|24 -6 0 1 -5}}, however, most of the members of this rank-4 family currently have yet to be explored. For other families that are defined by the tempering of this comma, see [[the Quartercache]].
The '''quartismic family''' is built up from temperaments of various ranks that temper out the [[quartisma]]- the unnoticeable comma with the ratio 117440512/117406179, and a monzo of {{monzo|24 -6 0 1 -5}}. Among the members of this family are quartismatic, altierran, meanquarter, coin, escapismic, dietismic, kleirtismic, and doublefour.


== Quartismic ==
== Quartismic ==
Line 7: Line 6:
The 11-limit parent comma for the quartismic family is the the quartisma with a ratio of 117440512/117406179 and a monzo of {{monzo| 24 -6 0 1 -5 }}. As the quartisma is an unnoticeable comma, this rank-4 temperament is a [[microtemperament]].
The 11-limit parent comma for the quartismic family is the the quartisma with a ratio of 117440512/117406179 and a monzo of {{monzo| 24 -6 0 1 -5 }}. As the quartisma is an unnoticeable comma, this rank-4 temperament is a [[microtemperament]].


Subgroup: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7.11


[[Comma list]]: 117440512/117406179
[[Comma list]]: 117440512/117406179
Line 13: Line 12:
[[Mapping]]: [{{val| 1 0 0 1 5 }}, {{val| 0 1 0 1 -1 }}, {{val| 0 0 1 0 0 }}, {{val| 0 0 0 5 1 }}]
[[Mapping]]: [{{val| 1 0 0 1 5 }}, {{val| 0 1 0 1 -1 }}, {{val| 0 0 1 0 0 }}, {{val| 0 0 0 5 1 }}]


{{Multival|legend=1|rank=4| 5 1 0 -6 -24 }}
Mapping generators: ~2, ~3, ~5, ~33/32


[[POTE generator]]s: ~3/2 = 701.9826, ~5/4 = 386.3427, ~33/32 = 53.3748
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 701.9742, ~5/4 = 386.3137, ~33/32 = 53.3683


{{Val list|legend=1| 21, 22, 24, 25, 43, 45, 46, 67, 68, 89, 90, 91, 92, 110, 111, 113, 114, 132, 134, 135, 138, 156, 157, 159, 178, 179, 180, 181, 202, 224, 270, 313, 359, 494, 629, 653, 742, 877, 1012, 1236, 1506, 2159, 2248, 2383, 2518, 3125, 7419 }}
{{Optimal ET sequence|legend=1| 21, 22, 43, 46, 65d, 68, 89, 111, 159, 202, 224, 270, 494, 742, 764, 966, 1236, 1506, 2159, 2653, 3125, 3395, 7060, 7554, 10949e, 14614e, 15850ee, 22168bdee, 23404bcdee, 26799bcdeee, 34353bcdeeee }}


[[Badness]]: 0.274 × 10<sup>-6</sup>
[[Badness]]: 0.274 × 10<sup>-6</sup>


== Quartismatic ==
== Tridecimal quartismic ==
 
[[Subgroup]]: 2.3.5.7.11.13
There are some temperaments in the quartismic family in which the quartisma is tempered out, but without any sort of five-limit representation. This particular temperament is the parent temperament of all such no-fives children, and is referred to as '''Saquinlu-azo temperament''' in color notation.
 
Subgroup: 2.3.7.11
 
[[Comma list]]: 117440512/117406179
 
[[Sval]] [[mapping]]: [{{val| 1 0 1 5 }}, {{val| 0 1 1 -1 }}, {{val| 0 0 5 1 }}]
 
[[POTE generator]]s: ~3/2 = 701.9826, ~33/32 = 53.3748
 
{{Val list|legend=1| 21, 22, 24, 43, 46, 89, 135, 270, 359, 494, 629, 653, 742, 877, 1012, 1236, 1506, 2159, 2248, 2383, 2518, 7419 }}
 
The following unnamed rank-2 quartismic temperament MOS scales have been found
* [https://sevish.com/scaleworkshop/?name=Rank%202%20scale%20(106.71461627796054%2C%201200.0)%2C%205%7C5&data=106.714616%0A213.429233%0A320.143849%0A426.858465%0A533.573081%0A666.426919%0A773.141535%0A879.856151%0A986.570767%0A1093.285384%0A1200.000000&freq=440&midi=69&vert=9&horiz=1&colors=&waveform=triangle&ampenv=organ Rank 2 scale (106.71461627796054, 1200.0), 5|5] 
* The following scale tree has been found:  [http://www.microtonalsoftware.com/scale-tree.html?left=12&right=11&rr=1200&ioi=106.71461627796054 1200-106.71461627796054-12-11 Scale Tree]
 
== Altierran ==
 
In altierran, both the schisma and the quartisma are tempered out.
 
Subgroup: 2.3.5.7.11
 
[[Comma list]]: 32805/32768, 161280/161051
 
[[Mapping]]: [{{val| 1 0 15 1 5 }}, {{val| 0 1 -8 1 -1 }}, {{val| 0 0 0 5 1 }}]  
 
{{Multival|legend=1|rank=3| -102 24 -15 75 6 -8 40 1 -5 0 }}
 
[[POTE generator]]s: ~3/2 = 701.7299, ~33/32 = 53.3889
 
{{Val list|legend=1| 135, 159, 224, 248, 313, 472 }}
 
=== 13-limit ===
 
{{todo|inline=1| rename | comment = Not an immediate extension, must be renamed }}
 
Subgroup: 2.3.5.7.11.13
 
[[Comma list]]: 10985/10976, 32805/32768, 161280/161051
 
[[Mapping]]: [{{val| 1 2 -1 3 3 5 }}, {{val| 0 -3 24 -3 3 -11 }}, {{val| 0 0 0 5 1 5 }}]
 
[[POTE generator]]s: ~11/10 = 166.0628, ~33/32 = 53.4151
 
== Meanquarter ==
 
In meanquarter, both the meantone comma and the quartisma are tempered out.
 
Subgroup: 2.3.5.7.11
 
[[Comma list]]: 81/80, 4128768/4026275
 
[[Mapping]]: [{{val| 1 0 -4 1 5 }}, {{val| 0 1 4 1 -1 }}, {{val| 0 0 5 1 }}]
 
[[POTE generator]]s: ~3/2 = 697.3325, ~33/32 = 54.1064
 
{{Val list|legend=1| 24, 43, 45, 67 }}
 
== Coin ==
 
In coin, both the magic comma and the quartisma are tempered out.
 
Subgroup: 2.3.5.7.11
 
[[Comma list]]: 3125/3072, 117440512/117406179
 
[[Mapping]]: [{{val| 1 0 2 1 5 }}, {{val| 0 5 1 0 -6 }}, {{val| 0 0 0 5 1 }}]
 
[[POTE generator]]s: ~5/4 = 380.3623, ~9/7 = 433.3120
 
{{Val list|legend=1| 22, 25, 139cdd }}
 
== Escapismic ==
 
In escapisimic, both the escapade comma and the quartisma are tempered out, thus, it is essentially an [[Escapade family|Escapade expansion]].
 
Subgroup: 2.3.5.7.11
 
[[Comma list]]: 117440512/117406179, 4294967296/4271484375
 
[[Mapping]]: [{{val| 1 2 2 3 3 }}, {{val| 0 -9 7 -4 10 }}, {{val| 0 0 0 5 1 }}]
 
[[POTE generator]]s: ~33/32 = 55.3538
 
{{Val list|legend=1| 21, 22, 43 }}
 
== Dietismic ==
 
In dietismic, both the diaschisma and the quartisma are tempered out. Dietismic can easily be further tempered to [[Diaschismic family #Shrutar|shrutar]], and in fact, it is rather unusual to find a different tempering option.
 
Subgroup: 2.3.5.7.11
 
[[Comma list]]: 2048/2025, 117440512/117406179
 
[[POTE generator]]s: ~3/2 = 704.5238, ~33/32 = 53.4408
 
[[Mapping]]: [{{val| 2 3 5 5 7 }}, {{val| 0 2 -4 7 -1 }}]
 
{{Val list|legend=1| 22, 24, 38cdde, 46, 68, 114 }}
 
Scales:
 
[https://sevish.com/scaleworkshop/?name=Rank%202%20scale%20(52.6800%2C%202%2F1)&data=52.680000%0A105.360000%0A158.040000%0A210.720000%0A263.400000%0A316.080000%0A368.760000%0A421.440000%0A474.120000%0A526.800000%0A579.480000%0A632.160000%0A684.840000%0A725.880000%0A778.560000%0A831.240000%0A883.920000%0A936.600000%0A989.280000%0A1041.960000%0A1094.640000%0A1147.320000%0A1200.000000&freq=440&midi=69&vert=9&horiz=1&colors=&waveform=triangle&ampenv=organ Rank 2 scale (52.6800, 2/1), 13|9]
 
[https://sevish.com/scaleworkshop/?name=Rank%202%20scale%20(53.37418112074753%2C%202%2F1)%2C%2013%7C9&data=53.374181%0A106.748362%0A160.122543%0A213.496724%0A266.870906%0A320.245087%0A373.619268%0A426.993449%0A480.367630%0A533.741811%0A587.115992%0A640.490173%0A693.864355%0A719.632370%0A773.006551%0A826.380732%0A879.754913%0A933.129094%0A986.503276%0A1039.877457%0A1093.251638%0A1146.625819%0A1200.000000&freq=440&midi=69&vert=9&horiz=1&colors=white%20black%20white%20white%20black%20white%20black%20white%20white%20black%20white%20black&waveform=triangle&ampenv=organ Rank 2 scale (53.3742, 2/1), 13|9]
 
== Kleirtismic ==
 
In kleirtismic, both the kleisma and the quartisma are tempered out. The "kleir-" in "kleirtismic" is pronounced the same as "Clair".
 
Subgroup: 2.3.5.7.11
 
[[Comma list]]: 15625/15552, 117440512/117406179
 
[[Mapping]]: [{{val| 1 0 1 1 5 }}, {{val| 0 6 5 1 -7 }}, {{val| 0 0 0 5 1 }}]
 
[[POTE generator]]s: ~6/5 = 317.0291, ~68/55 = 370.2940
 
{{Val list|legend=1| 159, 178, 246 }}
 
== Doublefour ==
 
In doublefour, both the tetracot comma and the quartisma are tempered out.


Subgroup: 2.3.5.7.11
[[Comma list]]: 6656/6655, 123201/123200


[[Comma list]]: 20000/19683, 100656875/99090432
[[Mapping]]: [{{val| 1 0 0 1 5 6 }}, {{val| 0 1 0 1 -1 -3 }}, {{val| 0 0 1 0 0 1 }}, {{val| 0 0 0 5 1 3 }}]


[[Mapping]]: [{{val| 1 1 1 2 4 }}, {{val| 0 4 9 4 -4 }}, {{val| 0 0 0 5 1 }}]
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 701.9695, ~5/4 = 386.3174, ~33/32 = 53.3698


[[POTE generator]]s: ~425/384 = 175.9566, ~33/32 = 52.9708
{{Optimal ET sequence|legend=1| 22, 43f, 46, 65d, 89f, 111, 159, 224, 270, 494, 764, 1012, 1236, 1506, 2901, 3125, 3395, 8026e, 8296e, 11421e, 11691e, 12927e, 13421e, 16322ee, 16816dee }}


{{Val list|legend=1| 48d, 68, 89c }}
[[Badness]]: 1.739 × 10<sup>-6</sup>


[[Category:Regular temperament theory]]
[[Category:Temperament families]]
[[Category:Temperament family]]
[[Category:Pages with mostly numerical content]]
[[Category:Microtemperament]]
[[Category:Microtemperaments]]
[[Category:Quartismic]]
[[Category:Quartismic]]
[[Category:Rank 4]]
[[Category:Rank 4]]

Latest revision as of 00:26, 24 June 2025

This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The quartismic family is a family of rank-4 temperaments tempers out the quartisma – the unnoticeable comma with the ratio 117440512/117406179, and a monzo of [24 -6 0 1 -5, however, most of the members of this rank-4 family currently have yet to be explored. For other families that are defined by the tempering of this comma, see the Quartercache.

Quartismic

The 11-limit parent comma for the quartismic family is the the quartisma with a ratio of 117440512/117406179 and a monzo of [24 -6 0 1 -5. As the quartisma is an unnoticeable comma, this rank-4 temperament is a microtemperament.

Subgroup: 2.3.5.7.11

Comma list: 117440512/117406179

Mapping: [1 0 0 1 5], 0 1 0 1 -1], 0 0 1 0 0], 0 0 0 5 1]]

Mapping generators: ~2, ~3, ~5, ~33/32

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.9742, ~5/4 = 386.3137, ~33/32 = 53.3683

Optimal ET sequence21, 22, 43, 46, 65d, 68, 89, 111, 159, 202, 224, 270, 494, 742, 764, 966, 1236, 1506, 2159, 2653, 3125, 3395, 7060, 7554, 10949e, 14614e, 15850ee, 22168bdee, 23404bcdee, 26799bcdeee, 34353bcdeeee

Badness: 0.274 × 10-6

Tridecimal quartismic

Subgroup: 2.3.5.7.11.13

Comma list: 6656/6655, 123201/123200

Mapping: [1 0 0 1 5 6], 0 1 0 1 -1 -3], 0 0 1 0 0 1], 0 0 0 5 1 3]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.9695, ~5/4 = 386.3174, ~33/32 = 53.3698

Optimal ET sequence22, 43f, 46, 65d, 89f, 111, 159, 224, 270, 494, 764, 1012, 1236, 1506, 2901, 3125, 3395, 8026e, 8296e, 11421e, 11691e, 12927e, 13421e, 16322ee, 16816dee

Badness: 1.739 × 10-6