243edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Theory: +subsets and supersets
ArrowHead294 (talk | contribs)
mNo edit summary
Line 16: Line 16:


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{{comma basis begin}}
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal 8ve <br>Stretch (¢)
! colspan="2" | Tuning Error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 46: Line 38:
| 0.192
| 0.192
| 3.90
| 3.90
|}
{{comma basis end}}
* 243et (243e val) has a lower absolute error than any previous equal temperaments in the 19-limit, despite inconsistency in the corresponding odd limit. The same subgroup is only better tuned by [[270edo|270et]]. It is much stronger in the no-11 19-limit, with a lower relative error than any previous equal temperaments. The next equal temperament doing better in this subgroup is [[354edo|354et]] in terms of absolute error and [[935edo|935et]] in terms of relative error.  
* 243et (243e val) has a lower absolute error than any previous equal temperaments in the 19-limit, despite inconsistency in the corresponding odd limit. The same subgroup is only better tuned by [[270edo|270et]]. It is much stronger in the no-11 19-limit, with a lower relative error than any previous equal temperaments. The next equal temperament doing better in this subgroup is [[354edo|354et]] in terms of absolute error and [[935edo|935et]] in terms of relative error.  


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{{rank-2 begin}}
|+Table of rank-2 temperaments by generator
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>Ratio*
! Temperaments
|-
|-
| 1
| 1
Line 89: Line 75:
|-
|-
| 9
| 9
| 64\243<br>(10\243)
| 64\243<br />(10\243)
| 316.05<br>(49.38)
| 316.05<br />(49.38)
| 6/5<br>(36/35)
| 6/5<br />(36/35)
| [[Ennealimmal]]
| [[Ennealimmal]]
|}
{{rank-2 end}}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
{{orf}}


[[Category:Ennealimmal]]
[[Category:Ennealimmal]]
[[Category:Jove]]
[[Category:Jove]]

Revision as of 04:34, 16 November 2024

← 242edo 243edo 244edo →
Prime factorization 35
Step size 4.93827 ¢ 
Fifth 142\243 (701.235 ¢)
Semitones (A1:m2) 22:19 (108.6 ¢ : 93.83 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

243et tempers out the semicomma (i.e. the 5-limit orwell comma) 2109375/2097152 in the 5-limit, and 2401/2400 and 4375/4374 in the 7-limit.

Using the patent val, it tempers out 243/242, 441/440, and 540/539 in the 11-limit, and provides the optimal patent val for the ennealimnic temperament. In the 13-limit it tempers out 364/363, 625/624, 729/728, and 2080/2079, and provides the optimal temperament for 13-limit ennealimnic and the rank-3 jovial temperament, and in the 17-limit it tempers out 375/374 and 595/594 and provides the optimal patent val for 17-limit ennealimnic.

Using the alternative val 243e 241 385 564 682 840], with an lower error, it tempers out 385/384, 1375/1372, 8019/8000, and 14641/14580, and in the 13-limit, 625/624, 729/728, 847/845, 1001/1000, and 1716/1715. It provides a good tuning for fibo.

Prime harmonics

Approximation of prime harmonics in 243edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.72 -1.13 -0.92 +1.77 -1.02 -1.25 -1.22 -1.11 -2.42 +0.64
Relative (%) +0.0 -14.6 -22.9 -18.7 +35.8 -20.7 -25.3 -24.6 -22.6 -48.9 +13.0
Steps
(reduced)
243
(0)
385
(142)
564
(78)
682
(196)
841
(112)
899
(170)
993
(21)
1032
(60)
1099
(127)
1180
(208)
1204
(232)

Subsets and supersets

Since 243 factors into 35, 243edo has subset edos 3, 9, 27, and 81.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-385 243 | [243 385]] | +0.227 | 0.227 | 4.60 |- | 2.3.5 | 2109375/2097152, [1 -27 18 | [243 385 564]] | +0.314 | 0.222 | 4.50 |- | 2.3.5.7 | 2401/2400, 4375/4374, 2109375/2097152 | [241 385 564 682]] | +0.318 | 0.192 | 3.90 Template:Comma basis end

  • 243et (243e val) has a lower absolute error than any previous equal temperaments in the 19-limit, despite inconsistency in the corresponding odd limit. The same subgroup is only better tuned by 270et. It is much stronger in the no-11 19-limit, with a lower relative error than any previous equal temperaments. The next equal temperament doing better in this subgroup is 354et in terms of absolute error and 935et in terms of relative error.

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 11\243 | 54.32 | 405/392 | Quinwell |- | 1 | 47\243 | 232.10 | 8/7 | Quadrawell |- | 1 | 55\243 | 271.60 | 75/64 | Sabric |- | 1 | 64\243 | 316.05 | 6/5 | Counterkleismic |- | 1 | 92\243 | 454.32 | 13/10 | Fibo |- | 9 | 64\243
(10\243) | 316.05
(49.38) | 6/5
(36/35) | Ennealimmal Template:Rank-2 end Template:Orf