Template:MOSes by EDO: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<includeonly>{{#invoke: | <includeonly>{{#invoke: MOSes_by_EDO | mos_in_edo_allperiods_frame | ||
| EDO={{{EDO|}}} | | EDO={{{EDO|}}} | ||
| Number of Periods={{{Number of Periods|}}} | | Number of Periods={{{Number of Periods|}}} | ||
Line 7: | Line 7: | ||
| Temperaments={{{Temperaments|}}} | | Temperaments={{{Temperaments|}}} | ||
}}</includeonly><noinclude> | }}</includeonly><noinclude> | ||
Copied from Ganaram Inukshuk's template on 22 Oct 2024, the only change was | Copied from Ganaram Inukshuk's template on 22 Oct 2024, the only change was calling a slightly altered copy of the module. | ||
= Example of usage = | |||
== 11edo == | |||
{{MOSes by EDO|EDO=11|Show Subsets=1|Number of Periods=All}} | |||
== 12edo == | == 12edo == |
Latest revision as of 04:25, 22 September 2024
Copied from Ganaram Inukshuk's template on 22 Oct 2024, the only change was calling a slightly altered copy of the module.
Example of usage
11edo
These are all moment of symmetry scales in 11edo.
Single-period MOS scales
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├─────┼────┤ | 1L 1s | 6, 5 | 6:5 |
├┼────┼────┤ | 2L 1s | 5, 1 | 5:1 |
├┼┼───┼┼───┤ | 2L 3s | 4, 1 | 4:1 |
├┼┼┼──┼┼┼──┤ | 2L 5s (antidiatonic) | 3, 1 | 3:1 |
├┼┼┼┼─┼┼┼┼─┤ | 2L 7s (balzano) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┤ | 11edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├──────┼───┤ | 1L 1s | 7, 4 | 7:4 |
├──┼───┼───┤ | 2L 1s | 4, 3 | 4:3 |
├──┼──┼┼──┼┤ | 3L 2s | 3, 1 | 3:1 |
├─┼┼─┼┼┼─┼┼┤ | 3L 5s (checkertonic) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┤ | 11edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├───────┼──┤ | 1L 1s | 8, 3 | 8:3 |
├────┼──┼──┤ | 1L 2s | 5, 3 | 5:3 |
├─┼──┼──┼──┤ | 3L 1s | 3, 2 | 3:2 |
├─┼─┼┼─┼┼─┼┤ | 4L 3s (smitonic) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┤ | 11edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├────────┼─┤ | 1L 1s | 9, 2 | 9:2 |
├──────┼─┼─┤ | 1L 2s | 7, 2 | 7:2 |
├────┼─┼─┼─┤ | 1L 3s | 5, 2 | 5:2 |
├──┼─┼─┼─┼─┤ | 1L 4s | 3, 2 | 3:2 |
├┼─┼─┼─┼─┼─┤ | 5L 1s (machinoid) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┤ | 11edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├─────────┼┤ | 1L 1s | 10, 1 | 10:1 |
├────────┼┼┤ | 1L 2s | 9, 1 | 9:1 |
├───────┼┼┼┤ | 1L 3s | 8, 1 | 8:1 |
├──────┼┼┼┼┤ | 1L 4s | 7, 1 | 7:1 |
├─────┼┼┼┼┼┤ | 1L 5s (antimachinoid) | 6, 1 | 6:1 |
├────┼┼┼┼┼┼┤ | 1L 6s (onyx) | 5, 1 | 5:1 |
├───┼┼┼┼┼┼┼┤ | 1L 7s (antipine) | 4, 1 | 4:1 |
├──┼┼┼┼┼┼┼┼┤ | 1L 8s (antisubneutralic) | 3, 1 | 3:1 |
├─┼┼┼┼┼┼┼┼┼┤ | 1L 9s (antisinatonic) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┤ | 11edo | 1, 1 | 1:1 |
12edo
These are all moment of symmetry scales in 12edo.
Single-period MOS scales
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├──────┼────┤ | 1L 1s | 7, 5 | 7:5 |
├─┼────┼────┤ | 2L 1s | 5, 2 | 5:2 |
├─┼─┼──┼─┼──┤ | 2L 3s | 3, 2 | 3:2 |
├─┼─┼─┼┼─┼─┼┤ | 5L 2s (diatonic) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┤ | 12edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├───────┼───┤ | 1L 1s | 8, 4 | 2:1 |
├───┼───┼───┤ | 3edo | 4, 4 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├────────┼──┤ | 1L 1s | 9, 3 | 3:1 |
├─────┼──┼──┤ | 1L 2s | 6, 3 | 2:1 |
├──┼──┼──┼──┤ | 4edo | 3, 3 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├─────────┼─┤ | 1L 1s | 10, 2 | 5:1 |
├───────┼─┼─┤ | 1L 2s | 8, 2 | 4:1 |
├─────┼─┼─┼─┤ | 1L 3s | 6, 2 | 3:1 |
├───┼─┼─┼─┼─┤ | 1L 4s | 4, 2 | 2:1 |
├─┼─┼─┼─┼─┼─┤ | 6edo | 2, 2 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├──────────┼┤ | 1L 1s | 11, 1 | 11:1 |
├─────────┼┼┤ | 1L 2s | 10, 1 | 10:1 |
├────────┼┼┼┤ | 1L 3s | 9, 1 | 9:1 |
├───────┼┼┼┼┤ | 1L 4s | 8, 1 | 8:1 |
├──────┼┼┼┼┼┤ | 1L 5s (antimachinoid) | 7, 1 | 7:1 |
├─────┼┼┼┼┼┼┤ | 1L 6s (onyx) | 6, 1 | 6:1 |
├────┼┼┼┼┼┼┼┤ | 1L 7s (antipine) | 5, 1 | 5:1 |
├───┼┼┼┼┼┼┼┼┤ | 1L 8s (antisubneutralic) | 4, 1 | 4:1 |
├──┼┼┼┼┼┼┼┼┼┤ | 1L 9s (antisinatonic) | 3, 1 | 3:1 |
├─┼┼┼┼┼┼┼┼┼┼┤ | 1L 10s | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┤ | 12edo | 1, 1 | 1:1 |
Multi-period MOS scales
2 periods
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├───┼─┼───┼─┤ | 2L 2s | 4, 2 | 2:1 |
├─┼─┼─┼─┼─┼─┤ | 6edo | 2, 2 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├────┼┼────┼┤ | 2L 2s | 5, 1 | 5:1 |
├───┼┼┼───┼┼┤ | 2L 4s (malic) | 4, 1 | 4:1 |
├──┼┼┼┼──┼┼┼┤ | 2L 6s (subaric) | 3, 1 | 3:1 |
├─┼┼┼┼┼─┼┼┼┼┤ | 2L 8s (jaric) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┤ | 12edo | 1, 1 | 1:1 |
3 periods
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├──┼┼──┼┼──┼┤ | 3L 3s (triwood) | 3, 1 | 3:1 |
├─┼┼┼─┼┼┼─┼┼┤ | 3L 6s (tcherepnin) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┤ | 12edo | 1, 1 | 1:1 |
4 periods
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├─┼┼─┼┼─┼┼─┼┤ | 4L 4s (tetrawood) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┤ | 12edo | 1, 1 | 1:1 |
13edo
These are all moment of symmetry scales in 13edo.
Single-period MOS scales
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├──────┼─────┤ | 1L 1s | 7, 6 | 7:6 |
├┼─────┼─────┤ | 2L 1s | 6, 1 | 6:1 |
├┼┼────┼┼────┤ | 2L 3s | 5, 1 | 5:1 |
├┼┼┼───┼┼┼───┤ | 2L 5s (antidiatonic) | 4, 1 | 4:1 |
├┼┼┼┼──┼┼┼┼──┤ | 2L 7s (balzano) | 3, 1 | 3:1 |
├┼┼┼┼┼─┼┼┼┼┼─┤ | 2L 9s | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┼┤ | 13edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├───────┼────┤ | 1L 1s | 8, 5 | 8:5 |
├──┼────┼────┤ | 2L 1s | 5, 3 | 5:3 |
├──┼──┼─┼──┼─┤ | 3L 2s | 3, 2 | 3:2 |
├┼─┼┼─┼─┼┼─┼─┤ | 5L 3s (oneirotonic) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┼┤ | 13edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├────────┼───┤ | 1L 1s | 9, 4 | 9:4 |
├────┼───┼───┤ | 1L 2s | 5, 4 | 5:4 |
├┼───┼───┼───┤ | 3L 1s | 4, 1 | 4:1 |
├┼┼──┼┼──┼┼──┤ | 3L 4s (mosh) | 3, 1 | 3:1 |
├┼┼┼─┼┼┼─┼┼┼─┤ | 3L 7s (sephiroid) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┼┤ | 13edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├─────────┼──┤ | 1L 1s | 10, 3 | 10:3 |
├──────┼──┼──┤ | 1L 2s | 7, 3 | 7:3 |
├───┼──┼──┼──┤ | 1L 3s | 4, 3 | 4:3 |
├┼──┼──┼──┼──┤ | 4L 1s | 3, 1 | 3:1 |
├┼┼─┼┼─┼┼─┼┼─┤ | 4L 5s (gramitonic) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┼┤ | 13edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├──────────┼─┤ | 1L 1s | 11, 2 | 11:2 |
├────────┼─┼─┤ | 1L 2s | 9, 2 | 9:2 |
├──────┼─┼─┼─┤ | 1L 3s | 7, 2 | 7:2 |
├────┼─┼─┼─┼─┤ | 1L 4s | 5, 2 | 5:2 |
├──┼─┼─┼─┼─┼─┤ | 1L 5s (antimachinoid) | 3, 2 | 3:2 |
├┼─┼─┼─┼─┼─┼─┤ | 6L 1s (archaeotonic) | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┼┤ | 13edo | 1, 1 | 1:1 |
Step visualization | MOS (name) | Step sizes | Step ratio |
---|---|---|---|
├───────────┼┤ | 1L 1s | 12, 1 | 12:1 |
├──────────┼┼┤ | 1L 2s | 11, 1 | 11:1 |
├─────────┼┼┼┤ | 1L 3s | 10, 1 | 10:1 |
├────────┼┼┼┼┤ | 1L 4s | 9, 1 | 9:1 |
├───────┼┼┼┼┼┤ | 1L 5s (antimachinoid) | 8, 1 | 8:1 |
├──────┼┼┼┼┼┼┤ | 1L 6s (onyx) | 7, 1 | 7:1 |
├─────┼┼┼┼┼┼┼┤ | 1L 7s (antipine) | 6, 1 | 6:1 |
├────┼┼┼┼┼┼┼┼┤ | 1L 8s (antisubneutralic) | 5, 1 | 5:1 |
├───┼┼┼┼┼┼┼┼┼┤ | 1L 9s (antisinatonic) | 4, 1 | 4:1 |
├──┼┼┼┼┼┼┼┼┼┼┤ | 1L 10s | 3, 1 | 3:1 |
├─┼┼┼┼┼┼┼┼┼┼┼┤ | 1L 11s | 2, 1 | 2:1 |
├┼┼┼┼┼┼┼┼┼┼┼┼┤ | 13edo | 1, 1 | 1:1 |