Template:MOSes by EDO: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
Created template matching the recently created module
 
BudjarnLambeth (talk | contribs)
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
<includeonly>{{#invoke: MOSes_by_edo | mos_in_edo_allperiods_frame
<includeonly>{{#invoke: MOSes_by_EDO | mos_in_edo_allperiods_frame
| EDO={{{EDO|}}}
| EDO={{{EDO|}}}
| Number of Periods={{{Number of Periods|}}}
| Number of Periods={{{Number of Periods|}}}
Line 7: Line 7:
| Temperaments={{{Temperaments|}}}
| Temperaments={{{Temperaments|}}}
}}</includeonly><noinclude>
}}</includeonly><noinclude>
Copied from Ganaram Inukshuk's template on 22 Oct 2024, the only change was changing an altered module.
Copied from Ganaram Inukshuk's template on 22 Oct 2024, the only change was calling a slightly altered copy of the module.


Test usage:
= Example of usage =
 
== 11edo ==
{{MOSes by EDO|EDO=11|Show Subsets=1|Number of Periods=All}}


== 12edo ==
== 12edo ==
{{MOSes in EDO|EDO=12|Show Subsets=1|Number of Periods=All}}
{{MOSes by EDO|EDO=12|Show Subsets=1|Number of Periods=All}}


== 13edo ==
== 13edo ==
{{MOSes in EDO|EDO=13|Show Subsets=1|Number of Periods=All}}
{{MOSes by EDO|EDO=13|Show Subsets=1|Number of Periods=All}}


[[Category:MOS scale templates]]
[[Category:MOS scale templates]]
</noinclude>
</noinclude>

Latest revision as of 04:25, 22 September 2024

Copied from Ganaram Inukshuk's template on 22 Oct 2024, the only change was calling a slightly altered copy of the module.

Example of usage

11edo

These are all moment of symmetry scales in 11edo.
Single-period MOS scales

Generators 6\11 and 5\11
Step visualization MOS (name) Step sizes Step ratio
├─────┼────┤ 1L 1s 6, 5 6:5
├┼────┼────┤ 2L 1s 5, 1 5:1
├┼┼───┼┼───┤ 2L 3s 4, 1 4:1
├┼┼┼──┼┼┼──┤ 2L 5s (antidiatonic) 3, 1 3:1
├┼┼┼┼─┼┼┼┼─┤ 2L 7s (balzano) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┤ 11edo 1, 1 1:1
Generators 7\11 and 4\11
Step visualization MOS (name) Step sizes Step ratio
├──────┼───┤ 1L 1s 7, 4 7:4
├──┼───┼───┤ 2L 1s 4, 3 4:3
├──┼──┼┼──┼┤ 3L 2s 3, 1 3:1
├─┼┼─┼┼┼─┼┼┤ 3L 5s (checkertonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┤ 11edo 1, 1 1:1
Generators 8\11 and 3\11
Step visualization MOS (name) Step sizes Step ratio
├───────┼──┤ 1L 1s 8, 3 8:3
├────┼──┼──┤ 1L 2s 5, 3 5:3
├─┼──┼──┼──┤ 3L 1s 3, 2 3:2
├─┼─┼┼─┼┼─┼┤ 4L 3s (smitonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┤ 11edo 1, 1 1:1
Generators 9\11 and 2\11
Step visualization MOS (name) Step sizes Step ratio
├────────┼─┤ 1L 1s 9, 2 9:2
├──────┼─┼─┤ 1L 2s 7, 2 7:2
├────┼─┼─┼─┤ 1L 3s 5, 2 5:2
├──┼─┼─┼─┼─┤ 1L 4s 3, 2 3:2
├┼─┼─┼─┼─┼─┤ 5L 1s (machinoid) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┤ 11edo 1, 1 1:1
Generators 10\11 and 1\11
Step visualization MOS (name) Step sizes Step ratio
├─────────┼┤ 1L 1s 10, 1 10:1
├────────┼┼┤ 1L 2s 9, 1 9:1
├───────┼┼┼┤ 1L 3s 8, 1 8:1
├──────┼┼┼┼┤ 1L 4s 7, 1 7:1
├─────┼┼┼┼┼┤ 1L 5s (antimachinoid) 6, 1 6:1
├────┼┼┼┼┼┼┤ 1L 6s (onyx) 5, 1 5:1
├───┼┼┼┼┼┼┼┤ 1L 7s (antipine) 4, 1 4:1
├──┼┼┼┼┼┼┼┼┤ 1L 8s (antisubneutralic) 3, 1 3:1
├─┼┼┼┼┼┼┼┼┼┤ 1L 9s (antisinatonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┤ 11edo 1, 1 1:1


12edo

These are all moment of symmetry scales in 12edo.
Single-period MOS scales

Generators 7\12 and 5\12
Step visualization MOS (name) Step sizes Step ratio
├──────┼────┤ 1L 1s 7, 5 7:5
├─┼────┼────┤ 2L 1s 5, 2 5:2
├─┼─┼──┼─┼──┤ 2L 3s 3, 2 3:2
├─┼─┼─┼┼─┼─┼┤ 5L 2s (diatonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1
Generators 8\12 and 4\12
Step visualization MOS (name) Step sizes Step ratio
├───────┼───┤ 1L 1s 8, 4 2:1
├───┼───┼───┤ 3edo 4, 4 1:1
Generators 9\12 and 3\12
Step visualization MOS (name) Step sizes Step ratio
├────────┼──┤ 1L 1s 9, 3 3:1
├─────┼──┼──┤ 1L 2s 6, 3 2:1
├──┼──┼──┼──┤ 4edo 3, 3 1:1
Generators 10\12 and 2\12
Step visualization MOS (name) Step sizes Step ratio
├─────────┼─┤ 1L 1s 10, 2 5:1
├───────┼─┼─┤ 1L 2s 8, 2 4:1
├─────┼─┼─┼─┤ 1L 3s 6, 2 3:1
├───┼─┼─┼─┼─┤ 1L 4s 4, 2 2:1
├─┼─┼─┼─┼─┼─┤ 6edo 2, 2 1:1
Generators 11\12 and 1\12
Step visualization MOS (name) Step sizes Step ratio
├──────────┼┤ 1L 1s 11, 1 11:1
├─────────┼┼┤ 1L 2s 10, 1 10:1
├────────┼┼┼┤ 1L 3s 9, 1 9:1
├───────┼┼┼┼┤ 1L 4s 8, 1 8:1
├──────┼┼┼┼┼┤ 1L 5s (antimachinoid) 7, 1 7:1
├─────┼┼┼┼┼┼┤ 1L 6s (onyx) 6, 1 6:1
├────┼┼┼┼┼┼┼┤ 1L 7s (antipine) 5, 1 5:1
├───┼┼┼┼┼┼┼┼┤ 1L 8s (antisubneutralic) 4, 1 4:1
├──┼┼┼┼┼┼┼┼┼┤ 1L 9s (antisinatonic) 3, 1 3:1
├─┼┼┼┼┼┼┼┼┼┼┤ 1L 10s 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1


Multi-period MOS scales
2 periods

Generators 4\12 and 2\12
Step visualization MOS (name) Step sizes Step ratio
├───┼─┼───┼─┤ 2L 2s 4, 2 2:1
├─┼─┼─┼─┼─┼─┤ 6edo 2, 2 1:1
Generators 5\12 and 1\12
Step visualization MOS (name) Step sizes Step ratio
├────┼┼────┼┤ 2L 2s 5, 1 5:1
├───┼┼┼───┼┼┤ 2L 4s (malic) 4, 1 4:1
├──┼┼┼┼──┼┼┼┤ 2L 6s (subaric) 3, 1 3:1
├─┼┼┼┼┼─┼┼┼┼┤ 2L 8s (jaric) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1


3 periods

Generators 3\12 and 1\12
Step visualization MOS (name) Step sizes Step ratio
├──┼┼──┼┼──┼┤ 3L 3s (triwood) 3, 1 3:1
├─┼┼┼─┼┼┼─┼┼┤ 3L 6s (tcherepnin) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1


4 periods

Generators 2\12 and 1\12
Step visualization MOS (name) Step sizes Step ratio
├─┼┼─┼┼─┼┼─┼┤ 4L 4s (tetrawood) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1


13edo

These are all moment of symmetry scales in 13edo.
Single-period MOS scales

Generators 7\13 and 6\13
Step visualization MOS (name) Step sizes Step ratio
├──────┼─────┤ 1L 1s 7, 6 7:6
├┼─────┼─────┤ 2L 1s 6, 1 6:1
├┼┼────┼┼────┤ 2L 3s 5, 1 5:1
├┼┼┼───┼┼┼───┤ 2L 5s (antidiatonic) 4, 1 4:1
├┼┼┼┼──┼┼┼┼──┤ 2L 7s (balzano) 3, 1 3:1
├┼┼┼┼┼─┼┼┼┼┼─┤ 2L 9s 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 8\13 and 5\13
Step visualization MOS (name) Step sizes Step ratio
├───────┼────┤ 1L 1s 8, 5 8:5
├──┼────┼────┤ 2L 1s 5, 3 5:3
├──┼──┼─┼──┼─┤ 3L 2s 3, 2 3:2
├┼─┼┼─┼─┼┼─┼─┤ 5L 3s (oneirotonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 9\13 and 4\13
Step visualization MOS (name) Step sizes Step ratio
├────────┼───┤ 1L 1s 9, 4 9:4
├────┼───┼───┤ 1L 2s 5, 4 5:4
├┼───┼───┼───┤ 3L 1s 4, 1 4:1
├┼┼──┼┼──┼┼──┤ 3L 4s (mosh) 3, 1 3:1
├┼┼┼─┼┼┼─┼┼┼─┤ 3L 7s (sephiroid) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 10\13 and 3\13
Step visualization MOS (name) Step sizes Step ratio
├─────────┼──┤ 1L 1s 10, 3 10:3
├──────┼──┼──┤ 1L 2s 7, 3 7:3
├───┼──┼──┼──┤ 1L 3s 4, 3 4:3
├┼──┼──┼──┼──┤ 4L 1s 3, 1 3:1
├┼┼─┼┼─┼┼─┼┼─┤ 4L 5s (gramitonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 11\13 and 2\13
Step visualization MOS (name) Step sizes Step ratio
├──────────┼─┤ 1L 1s 11, 2 11:2
├────────┼─┼─┤ 1L 2s 9, 2 9:2
├──────┼─┼─┼─┤ 1L 3s 7, 2 7:2
├────┼─┼─┼─┼─┤ 1L 4s 5, 2 5:2
├──┼─┼─┼─┼─┼─┤ 1L 5s (antimachinoid) 3, 2 3:2
├┼─┼─┼─┼─┼─┼─┤ 6L 1s (archaeotonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 12\13 and 1\13
Step visualization MOS (name) Step sizes Step ratio
├───────────┼┤ 1L 1s 12, 1 12:1
├──────────┼┼┤ 1L 2s 11, 1 11:1
├─────────┼┼┼┤ 1L 3s 10, 1 10:1
├────────┼┼┼┼┤ 1L 4s 9, 1 9:1
├───────┼┼┼┼┼┤ 1L 5s (antimachinoid) 8, 1 8:1
├──────┼┼┼┼┼┼┤ 1L 6s (onyx) 7, 1 7:1
├─────┼┼┼┼┼┼┼┤ 1L 7s (antipine) 6, 1 6:1
├────┼┼┼┼┼┼┼┼┤ 1L 8s (antisubneutralic) 5, 1 5:1
├───┼┼┼┼┼┼┼┼┼┤ 1L 9s (antisinatonic) 4, 1 4:1
├──┼┼┼┼┼┼┼┼┼┼┤ 1L 10s 3, 1 3:1
├─┼┼┼┼┼┼┼┼┼┼┼┤ 1L 11s 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1