810edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
No edit summary
+subsets and supersets
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|810}}
{{EDO intro}}


=== Prime harmonics ===
=== Prime harmonics ===
{{Harmonics in equal|810|prec=3|columns=15}}
{{Harmonics in equal|810|prec=3|columns=15}}
=== Subsets and supersets ===
Since 810 factors into {{factorization|810}}, 810edo has subset edos {{EDOs| 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 81, 90, 135, 162, 270, 405 }}.


{{Stub}}
{{Stub}}

Revision as of 10:19, 1 September 2024

← 809edo 810edo 811edo →
Prime factorization 2 × 34 × 5
Step size 1.48148 ¢ 
Fifth 474\810 (702.222 ¢) (→ 79\135)
Semitones (A1:m2) 78:60 (115.6 ¢ : 88.89 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Prime harmonics

Approximation of prime harmonics in 810edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Error Absolute (¢) +0.000 +0.267 +0.353 +0.063 -0.207 -0.528 +0.230 +0.265 -0.126 +0.052 +0.150 +0.508 +0.567 -0.407 -0.321
Relative (%) +0.0 +18.0 +23.8 +4.3 -14.0 -35.6 +15.5 +17.9 -8.5 +3.5 +10.1 +34.3 +38.3 -27.4 -21.7
Steps
(reduced)
810
(0)
1284
(474)
1881
(261)
2274
(654)
2802
(372)
2997
(567)
3311
(71)
3441
(201)
3664
(424)
3935
(695)
4013
(773)
4220
(170)
4340
(290)
4395
(345)
4499
(449)

Subsets and supersets

Since 810 factors into 2 × 34 × 5, 810edo has subset edos 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 81, 90, 135, 162, 270, 405.


This page is a stub. You can help the Xenharmonic Wiki by expanding it.