117edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Rework
Cleanup and group the vals by similarity
Line 2: Line 2:
{{EDO intro|117}}
{{EDO intro|117}}


== Theory ==
117edo is in[[consistent]] to the [[5-odd-limit]] and higher odd limits, with four mappings possible for the [[11-limit]]: {{val| 117 185 272 328 405 }} ([[patent val]]), {{val| 117 186 '''272''' 329 '''405''' }} (117bd), {{val| 117 185 '''271''' 328 '''404''' }} (117ce), and {{val| 117 185 272 '''329''' 405 }} (117d).  
117edo is in[[consistent]] to the 5-odd-limit and higher odd limits, with four mappings possible for the 11-limit: {{val| 117 185 272 328 405 }} ([[patent val]]), {{val| 117 186 272 329 405 }} (117bd), {{val| 117 185 271 328 404 }} (117ce), and {{val| 117 185 272 329 405 }} (117d).  


=== Commas ===
Using the patent val, it [[tempering out|tempers out]] 81/80 ([[syntonic comma]]) and {{monzo| 69 -1 -29 }} in the 5-limit; [[6144/6125]], 31104/30625, and 403368/390625 in the 7-limit, [[support]]ing the 7-limit [[mohajira]] temperament; [[540/539]], 1344/1331, 1617/1600, and 3168/3125 in the 11-limit, supporting the rank-3 [[Didymus rank three family #Terpsichore|terpsichore]] temperament; [[144/143]], [[196/195]], [[364/363]], 729/715, and 3146/3125 in the 13-limit.  
Using the patent val, it tempers out the syntonic comma ([[81/80]]) and {{monzo| 69 -1 -29 }} in the 5-limit; 6144/6125, 31104/30625, and 403368/390625 in the 7-limit, supporting the 7-limit [[mohajira]] temperament; 540/539, 1344/1331, 1617/1600, and 3168/3125 in the 11-limit, supporting the rank-3 [[Didymus rank three family|terpsichore]] temperament; 144/143, 196/195, 364/363, 729/715, and 3146/3125 in the 13-limit.  


Using the 117bd val, it tempers out the kleisma ([[15625/15552]]) and 17179869184/16142520375 in the 5-limit; 245/243, 3136/3125, and 51200/50421 in the 7-limit; 176/175, 1232/1215, 1375/1372, and 2560/2541 in the 11-limit; 169/168, 364/363, 640/637, 832/825, and 3200/3159 in the 13-limit.  
Using the 117d val, it tempers out [[126/125]], [[225/224]], and {{monzo| 29 3 0 -12 }} in the 7-limit; [[99/98]], [[176/175]], [[441/440]], and 12582912/12400927 in the 11-limit; 144/143, [[640/637]], 648/637, [[1001/1000]], and 43940/43923 in the 13-limit, supporting the 13-limit [[grosstone]] temperament.


Using the 117ce val, it tempers out the magic comma ([[3125/3072]]) and 282429536481/268435456000 in the 5-limit; 2401/2400, 3645/3584, and 4375/4374 in the 7-limit; 243/242, 441/440, and 1815/1792 in the 11-limit; 105/104, 275/273, 1287/1280, and 2025/2002 in the 13-limit.  
Using the 117ce val, it tempers out 3125/3072 ([[magic comma]]) and {{monzo| -31 24 -3 }} in the 5-limit; [[2401/2400]], 3645/3584, and [[4375/4374]] in the 7-limit; [[243/242]], 441/440, and 1815/1792 in the 11-limit; [[105/104]], [[275/273]], [[1287/1280]], and 2025/2002 in the 13-limit.  


Using the 117d val, it tempers out 126/125, 225/224, and 14495514624/13841287201 in the 7-limit; 99/98, 176/175, 441/440, and 12582912/12400927 in the 11-limit; 144/143, 640/637, 648/637, 1001/1000, and 43940/43923 in the 13-limit, supporting the 13-limit [[grosstone]] temperament.
Using the 117bd val, it tempers out 15625/15552 ([[15625/15552|kleisma]]) and {{monzo| 34 -17 -3 }} in the 5-limit; [[245/243]], [[3136/3125]], and 51200/50421 in the 7-limit; 176/175, 1232/1215, [[1375/1372]], and 2560/2541 in the 11-limit; [[169/168]], [[364/363]], 640/637, 832/825, and 3200/3159 in the 13-limit.  


=== Harmonics ===
=== Odd harmonics ===
{{Harmonics in equal|117}}
{{Harmonics in equal|117}}

Revision as of 05:59, 4 June 2024

← 116edo 117edo 118edo →
Prime factorization 32 × 13
Step size 10.2564 ¢ 
Fifth 68\117 (697.436 ¢)
Semitones (A1:m2) 8:11 (82.05 ¢ : 112.8 ¢)
Dual sharp fifth 69\117 (707.692 ¢) (→ 23\39)
Dual flat fifth 68\117 (697.436 ¢)
Dual major 2nd 20\117 (205.128 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

117edo is inconsistent to the 5-odd-limit and higher odd limits, with four mappings possible for the 11-limit: 117 185 272 328 405] (patent val), 117 186 272 329 405] (117bd), 117 185 271 328 404] (117ce), and 117 185 272 329 405] (117d).

Using the patent val, it tempers out 81/80 (syntonic comma) and [69 -1 -29 in the 5-limit; 6144/6125, 31104/30625, and 403368/390625 in the 7-limit, supporting the 7-limit mohajira temperament; 540/539, 1344/1331, 1617/1600, and 3168/3125 in the 11-limit, supporting the rank-3 terpsichore temperament; 144/143, 196/195, 364/363, 729/715, and 3146/3125 in the 13-limit.

Using the 117d val, it tempers out 126/125, 225/224, and [29 3 0 -12 in the 7-limit; 99/98, 176/175, 441/440, and 12582912/12400927 in the 11-limit; 144/143, 640/637, 648/637, 1001/1000, and 43940/43923 in the 13-limit, supporting the 13-limit grosstone temperament.

Using the 117ce val, it tempers out 3125/3072 (magic comma) and [-31 24 -3 in the 5-limit; 2401/2400, 3645/3584, and 4375/4374 in the 7-limit; 243/242, 441/440, and 1815/1792 in the 11-limit; 105/104, 275/273, 1287/1280, and 2025/2002 in the 13-limit.

Using the 117bd val, it tempers out 15625/15552 (kleisma) and [34 -17 -3 in the 5-limit; 245/243, 3136/3125, and 51200/50421 in the 7-limit; 176/175, 1232/1215, 1375/1372, and 2560/2541 in the 11-limit; 169/168, 364/363, 640/637, 832/825, and 3200/3159 in the 13-limit.

Odd harmonics

Approximation of odd harmonics in 117edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -4.52 +3.43 -4.72 +1.22 +2.53 +0.50 -1.09 -2.39 -0.08 +1.01 -2.63
Relative (%) -44.1 +33.4 -46.1 +11.9 +24.7 +4.9 -10.6 -23.3 -0.8 +9.9 -25.7
Steps
(reduced)
185
(68)
272
(38)
328
(94)
371
(20)
405
(54)
433
(82)
457
(106)
478
(10)
497
(29)
514
(46)
529
(61)