138edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
BudjarnLambeth (talk | contribs)
m Added "harmonics in equal" table
Adopt template: EDO intro; group the vals by similarity; -redundant categories; misc. cleanup
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
'''138edo''' is the [[EDO|equal division of the octave]] into 138 parts of 8.6957 [[cent]]s each.
{{EDO intro}}


It is inconsistent to the 5-limit and higher limit, with three mappings possible for the 13-limit: <138 219 320 387 477 511| (patent val), <138 218 320 387 477 510| (138bf), and <138 219 321 388 478 511| (138cde).  
138edo is in[[consistent]] to the [[5-odd-limit]] and higher limits, with three mappings possible for the 13-limit: {{val| 138 219 320 387 477 511 }} ([[patent val]]), {{val| 138 '''218''' 320 387 477 '''510''' }} (138bf), and {{val| 138 219 '''321''' '''388''' '''478''' 511 }} (138cde).  


Using the patent val, it tempers out the shibboleth comma, 1953125/1889568 and the misty comma, 67108864/66430125 in the 5-limit; 875/864, 1029/1024, and 1647086/1594323 in the 7-limit; 896/891, 1331/1323, 1375/1372, and 2401/2376 in the 11-limit; 196/195, 275/273, and 1575/1573 in the 13-limit.  
Using the patent val, it [[tempering out|tempers out]] 1953125/1889568 ([[shibboleth comma]]) and 67108864/66430125 ([[misty comma]]) in the 5-limit; [[875/864]], [[1029/1024]], and 1647086/1594323 in the 7-limit; [[896/891]], 1331/1323, 1375/1372, and 2401/2376 in the 11-limit; [[196/195]], [[275/273]], and [[1575/1573]] in the 13-limit.  


Using the 138bf val, it tempers out the [[syntonic comma]], 81/80 and 2288818359375/2199023255552 in the 5-limit; 2401/2400, 2430/2401, and 9765625/9633792 in the 7-limit; 385/384, 1375/1372, 1944/1925, and 9375/9317 in the 11-limit, supporting the [[Meantone family|cuboctahedra temperament]]; 625/624, 975/968, 1001/1000, and 1188/1183 in the 13-limit.  
Using the 138cde val, it tempers out the [[diaschisma]], 2048/2025 and the [[sensipent comma]], 78732/78125 in the 5-limit; [[1728/1715]], [[10976/10935]], and [[250047/250000]] in the 7-limit; [[176/175]], [[540/539]], [[896/891]], and 85184/84375 in the 11-limit; [[351/350]], [[352/351]], [[364/363]], [[640/637]], and [[2197/2187]] in the 13-limit, supporting the [[echidna]] temperament.


Using the 138cde val, it tempers out the [[Diaschismic family|diaschisma]], 2048/2025 and the [[Sensipent family|sensipent comma]], 78732/78125 in the 5-limit; 1728/1715, 10976/10935, and 250047/250000 in the 7-limit; 176/175, 540/539, 896/891, and 85184/84375 in the 11-limit; 351/350, 352/351, 364/363, 640/637, and 2197/2187 in the 13-limit, supporting the [[Diaschismic family|echidna temperament]].
Using the 138bf val, it tempers out the [[syntonic comma]], 81/80 and {{monzo| -41 1 17 }} in the 5-limit; [[2401/2400]], [[2430/2401]], and 9765625/9633792 in the 7-limit; [[385/384]], [[1375/1372]], 1944/1925, and 9375/9317 in the 11-limit, supporting the [[Meantone family #Cuboctahedra|cuboctahedra]] temperament; [[625/624]], 975/968, [[1001/1000]], and [[1188/1183]] in the 13-limit.  


138edo can be treated as the 2.7/5.11/5.13/3 subgroup temperament, which tempers out 24192/24167, 1449459/1449175, and 75000000/74942413.
138edo can be treated as the 2.7/5.11/5.13/3 subgroup temperament, which tempers out 24192/24167, 1449459/1449175, and 75000000/74942413.


=== Odd harmonics ===
{{Harmonics in equal|138}}
{{Harmonics in equal|138}}
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->

Revision as of 09:43, 26 May 2024

← 137edo 138edo 139edo →
Prime factorization 2 × 3 × 23
Step size 8.69565 ¢ 
Fifth 81\138 (704.348 ¢) (→ 27\46)
Semitones (A1:m2) 15:9 (130.4 ¢ : 78.26 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

138edo is inconsistent to the 5-odd-limit and higher limits, with three mappings possible for the 13-limit: 138 219 320 387 477 511] (patent val), 138 218 320 387 477 510] (138bf), and 138 219 321 388 478 511] (138cde).

Using the patent val, it tempers out 1953125/1889568 (shibboleth comma) and 67108864/66430125 (misty comma) in the 5-limit; 875/864, 1029/1024, and 1647086/1594323 in the 7-limit; 896/891, 1331/1323, 1375/1372, and 2401/2376 in the 11-limit; 196/195, 275/273, and 1575/1573 in the 13-limit.

Using the 138cde val, it tempers out the diaschisma, 2048/2025 and the sensipent comma, 78732/78125 in the 5-limit; 1728/1715, 10976/10935, and 250047/250000 in the 7-limit; 176/175, 540/539, 896/891, and 85184/84375 in the 11-limit; 351/350, 352/351, 364/363, 640/637, and 2197/2187 in the 13-limit, supporting the echidna temperament.

Using the 138bf val, it tempers out the syntonic comma, 81/80 and [-41 1 17 in the 5-limit; 2401/2400, 2430/2401, and 9765625/9633792 in the 7-limit; 385/384, 1375/1372, 1944/1925, and 9375/9317 in the 11-limit, supporting the cuboctahedra temperament; 625/624, 975/968, 1001/1000, and 1188/1183 in the 13-limit.

138edo can be treated as the 2.7/5.11/5.13/3 subgroup temperament, which tempers out 24192/24167, 1449459/1449175, and 75000000/74942413.

Odd harmonics

Approximation of odd harmonics in 138edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +2.39 -3.71 -3.61 -3.91 -3.49 +2.95 -1.31 -0.61 -1.86 -1.22 -2.19
Relative (%) +27.5 -42.6 -41.5 -45.0 -40.2 +33.9 -15.1 -7.0 -21.4 -14.0 -25.2
Steps
(reduced)
219
(81)
320
(44)
387
(111)
437
(23)
477
(63)
511
(97)
539
(125)
564
(12)
586
(34)
606
(54)
624
(72)