Schismic-Pythagorean equivalence continuum

From Xenharmonic Wiki
Jump to navigation Jump to search

The Schismic-Pythagorean equivalence continuum is a continuum of 5-limit temperaments which equate a number of schismas (32805/32768) with Pythagorean comma ([-19 12). This continuum is theoretically interesting in that these are all 5-limit temperaments supported by 12edo.

All temperaments in the continuum satisfy (32805/32768)n ~ [-19 12. Varying n results in different temperaments listed in the table below. It converges to schismic as n approaches infinity. If we allow non-integer and infinite n, the continuum describes the set of all 5-limit temperaments supported by 12edo due to it being the unique equal temperament that tempers both commas and thus tempers all combinations of them. The just value of n is approximately 12.0078623975…, and temperaments having n near this value tend to be the most accurate ones – indeed, the fact that this number is so close to 12 reflects how small Kirnberger's atom (the difference between 12 schismas and the Pythagorean comma) is.

Temperaments in the continuum
n Temperament Comma
Ratio Monzo
-1 Gracecordial 17433922005/17179869184 [-34 20 1
0 Compton 531441/524288 [-19 12
1 Meantone 81/80 [-4 4 -1
2 Diaschismic 2048/2025 [11 -4 -2
3 Misty 67108864/66430125 [26 -12 -3
4 Undim [41 -20 -4
5 Quindromeda [56 -28 -5
6 Sextile [71 -36 -6
7 Sepsa-sepgu (12&323) [86 -44 -7
8 Tritrisa-quadbigu (12&388) [101 -52 -8
9 Quinbisa-tritrigu (12&441) [116 -60 -9
10 Lesa-quinbigu (12&494) [131 -68 -10
11 Quadtrisa-legu (12&559) [146 -76 -11
12 Atomic [161 -84 -12
13 Quintrila-theyo (12&677) [-176 92 13
Schismic 32805/32768 [-15 8 1

Examples of temperaments with fractional values of n:

Compton (12&72)

See also: Pythagorean comma and Compton family

Subgroup: 2.3.5

Comma list: [-19 12 = 531441/524288

Mapping: [12 19 28], 0 0 -1]]

Wedgie⟨⟨0 12 19]]

POTE generator: ~5/4 = 384.882

Vals: 12, 48, 60, 72, 84

Badness: 0.094494

Lalagu (12&79)

Subgroup: 2.3.5

Comma list: [-23 16 -1 = 43046721/41943040

Mapping: [1 0 -23], 0 -1 -16]]

Wedgie⟨⟨1 16 23]]

POTE generator: ~4/3 = 500.970

Vals: 12, …, 79, 91, 103

Badness: 0.295079

Quintaleap (12&121)

See also: Quintaleap family

Subgroup: 2.3.5

Comma list: [37 -16 -5 = 137438953472/134521003125

Mapping: [1 2 1], 0 -5 16]]

Wedgie⟨⟨5 -16 -37]]

POTE generator: ~135/128 = 99.267

Vals: 12, …, 85, 97, 109, 121, 133, 278c, 411bc, 544bc

Badness: 0.444506

Undim (12&152)

See also: Undim family

Subgroup: 2.3.5

Comma list: [41 -20 -4

Mapping: [4 0 41], 0 1 -5]]

Wedgie⟨⟨4 -20 -41]]

POTE generator: ~3/2 = 702.6054

Vals: 12, …, 104, 116, 128, 140, 152, 610, 772, 924c, 1076bc, 1228bc

Badness: 0.241703

Quindromeda (12&205)

See also: Quindromeda family

Subgroup: 2.3.5

Comma list: [56 -28 -5

Mapping: [1 2 0], 0 -5 28]]

POTE generator: ~4428675/4194304 = 99.526

Wedgie⟨⟨5 -28 -56]]

Vals: 12, …, 181, 193, 205, 217, 422

Badness: 0.399849

Sextile (12&270)

See also: Landscape microtemperaments #Sextile

Subgroup: 2.3.5

Comma list: [71 -36 -6

Mapping: [6 0 71], 0 1 -6]]

POTE generator: ~3/2 = 702.2356

Wedgie⟨⟨6 -36 -77]]

Vals: 12, …, 222, 234, 246, 258, 270, 1068, 1338, 1608, 1878, 4026bc

Badness: 0.555423