Quintupole
Quintupole is a temperament for the 7, 11, 13, 17, and 19 prime limits. It is a member of quintaleap family, octagar temperaments, and mistismic temperaments. It has a semitone inverval which represents 18/17, 35/33, 52/49, 55/52 and 135/128 as a generator, five of them give a fourth (~2.2 cents flat of 4/3), sixteen give 5/2, and thirty-four give seventh harmonic. 121EDO is an excellent tuning for quintupole, with a semitone generator of 10\121, and MOS of 13, 25, 37, 49, 61, 73, 85, 97, or 109 notes are available.
Temperament data
Subgroup: 2.3.5.7.11.13.17.19
Mapping: [⟨1 2 1 0 -1 -2 5 4], ⟨0 -5 16 34 54 69 -11 3]]
- 7-limit: 4000/3969, 458752/455625
- 11-limit: 896/891, 1375/1372, 4375/4356
- 13-limit: 352/351, 364/363, 625/624, 2704/2695
- 17-limit: 256/255, 352/351, 364/363, 375/374, 442/441
- 19-limit: 190/189, 256/255, 352/351, 361/360, 364/363, 375/374
- 7-limit: ~135/128 = 99.12306
- 11-limit: ~35/33 = 99.10969
- 13-limit: ~35/33 = 99.12210
- 17-limit: ~18/17 = 99.12595
- 19-limit: ~18/17 = 99.12598
- 7-limit: ~135/128 = 99.17546
- 11-limit: ~35/33 = 99.15582
- 13-limit: ~35/33 = 99.16472
- 17-limit: ~18/17 = 99.17178
- 19-limit: ~18/17 = 99.16377
- 7-limit: ~2 = 1199.32542, ~135/128 = 99.11971
- 11-limit: ~2 = 1199.34360, ~35/33 = 99.10159
- 13-limit: ~2 = 1199.32361, ~35/33 = 99.10883
- 17-limit: ~2 = 1199.22471, ~18/17 = 99.10770
- 19-limit: ~2 = 1199.36954, ~18/17 = 99.11167
Diamond monotone ranges:
- 7 and 9-odd-limit: ~135/128 = [98.63014, 100.00000] (6\73 to 1\12)
- 11-odd-limit: ~35/33 = [98.96907, 100.00000] (8\97 to 1\12)
- 13 and 15-odd-limit: ~35/33 = [99.08257, 99.24812] (9\109 to 11\133)
- 17, 19, and 21-odd-limit: ~18/17 = [99.08257, 99.24812] (9\109 to 11\133)
Diamond tradeoff ranges:
- 7 and 9-odd-limit: ~135/128 = [99.02846, 99.60900]
- 11 and 13-odd-limit: ~35/33 = [99.02846, 99.60900]
- 15-odd-limit: ~35/33 = [98.93352, 99.60900]
- 17-odd-limit: ~18/17 = [98.93352, 99.60900]
- 19-odd-limit: ~18/17 = [98.84446, 99.60900]
- 21-odd-limit: ~18/17 = [98.80517, 99.60900]
Diamond monotone and tradeoff ranges:
- 7 and 9-odd-limit: ~135/128 = [99.02846, 99.60900]
- 11-odd-limit: ~35/33 = [99.02846, 99.60900]
- 13 and 15-odd-limit: ~35/33 = [99.08257, 99.24812]
- 17, 19, and 21-odd-limit: ~18/17 = [99.08257, 99.24812]
Optimal ET sequences (Constrained TE):
- 7-limit: 12, 61cdd, 73cd, 85d, 97, 109, 230, 569bbd
- 11-limit: 12, …, 85dee, 97e, 109, 230, 339b, 448b
- 13-limit: 12f, …, 97ef, 109, 230, 339b, 569bbdef
- 17 and 19-limit: 12f, …, 97efg, 109, 230g
Optimal ET sequences (POTE):
- 7-limit: 12, 61cdd, 73cd, 85d, 97, 109, 121
- 11-limit: 12, …, 85dee, 97e, 109, 121, 351bde, 472bdee
- 13-limit: 12f, …, 97ef, 109, 121
- 17 and 19-limit: 12f, …, 97efg, 109, 121
- 7-limit: 0.111620
- 11-limit: 0.056501
- 13-limit: 0.038431
- 17-limit: 0.028721
- 19-limit: 0.023818
Interval chain
Quintupole is considered as a cluster temperament with twelve clusters of notes in an octave. The chroma interval between adjacent notes in each cluster represents 100/99~120/119~171/170~196/195~209/208~210/209~221/220~225/224~289/288~324/323~441/440~513/512 all tempered together.
Number of generator |
Cents value* |
Approximate Ratios |
---|---|---|
0 | 0.000 | 1/1 |
1 | 99.164 | 18/17, 35/33 |
2 | 198.328 | 28/25 |
3 | 297.491 | 19/16, 25/21 |
4 | 396.655 | 34/27 |
5 | 495.819 | 4/3 |
6 | 594.983 | 24/17 |
7 | 694.146 | |
8 | 793.310 | 19/12, 30/19 |
9 | 892.474 | |
10 | 991.638 | 16/9 |
11 | 1090.801 | 15/8, 32/17 |
12 | 1189.965 | |
13 | 89.129 | 19/18, 20/19, 21/20 |
14 | 188.293 | 19/17 |
15 | 287.457 | 13/11 |
16 | 386.620 | 5/4 |
17 | 485.784 | |
18 | 584.948 | 7/5 |
19 | 684.112 | |
20 | 783.275 | 11/7 |
21 | 882.439 | 5/3 |
22 | 981.603 | 30/17 |
23 | 1080.767 | 28/15 |
24 | 1179.930 | |
25 | 79.094 | 22/21 |
26 | 178.258 | 10/9, 21/19 |
27 | 277.422 | 20/17 |
28 | 376.586 | |
29 | 475.749 | 21/16 |
30 | 574.913 | |
31 | 674.077 | 28/19 |
32 | 773.241 | |
33 | 872.404 | |
34 | 971.568 | 7/4 |
35 | 1070.732 | 13/7 |
36 | 1169.896 | |
37 | 69.060 | 25/24, 26/25 |
38 | 168.223 | 11/10 |
39 | 267.387 | 7/6 |
40 | 366.551 | 21/17, 26/21 |
41 | 465.715 | |
42 | 564.878 | |
43 | 664.042 | 22/15 |
44 | 763.206 | 14/9 |
45 | 862.370 | 28/17 |
46 | 961.533 | |
47 | 1060.697 | |
48 | 1159.861 | 39/20 |
49 | 59.025 | 33/32 |
50 | 158.189 | |
51 | 257.352 | 22/19 |
52 | 356.516 | |
53 | 455.680 | 13/10 |
54 | 554.844 | 11/8 |
55 | 654.007 | |
56 | 753.171 | |
57 | 852.335 | |
58 | 951.499 | 26/15 |
59 | 1050.662 | 11/6 |
60 | 1149.826 | 35/18 |
61 | 48.990 | |
62 | 148.154 | |
63 | 247.318 | |
64 | 346.481 | 11/9 |
65 | 445.645 | 22/17 |
66 | 544.809 | 26/19 |
67 | 643.973 | |
68 | 743.136 | |
69 | 842.300 | 13/8 |
70 | 941.464 | |
71 | 1040.628 | |
72 | 1139.791 | |
73 | 38.955 | |
74 | 138.119 | 13/12 |
75 | 237.283 | |
76 | 336.447 | (close to 17/14) |
77 | 435.610 | (close to 9/7) |
78 | 534.774 | |
79 | 633.938 | 13/9 |
80 | 733.102 | 26/17 |
* in 19-limit POTE tuning
Tuning spectrum
Gencom: [2 18/17; 190/189 256/255 352/351 361/360 364/363 375/374]
Gencom mapping: [⟨1 2 1 0 -1 -2 5 4], ⟨0 -5 16 34 54 69 -11 3]]
Eigenmonzo (unchanged-interval) |
Generator (¢) |
Comments |
---|---|---|
21/20 | 98.8052 | |
19/15 | 98.8445 | |
16/15 | 98.9335 | |
18/17 | 98.9546 | |
21/19 | 98.9718 | |
21/16 | 98.9924 | |
7/5 | 99.0285 | |
19/14 | 99.0746 | |
11/10 | 99.0791 | |
8/7 | 99.0831 | |
22/19 | 99.0942 | |
11/8 | 99.0985 | |
14/11 | 99.1246 | |
13/10 | 99.1361 | |
26/19 | 99.1366 | |
16/13 | 99.1381 | |
20/19 | 99.1385 | |
15/11 | 99.1406 | |
12/11 | 99.1417 | |
5/4 | 99.1446 | |
21/17 | 99.1456 | |
7/6 | 99.1505 | 7 and 21-odd-limit minimax |
15/14 | 99.1547 | |
13/12 | 99.1699 | |
19/16 | 99.1710 | |
22/17 | 99.1748 | |
15/13 | 99.1769 | |
11/9 | 99.1782 | 11, 13, 15, 17 and 19-odd-limit minimax |
14/13 | 99.1915 | |
17/13 | 99.1947 | |
17/14 | 99.1971 | |
18/13 | 99.1977 | |
9/7 | 99.2026 | 9-odd-limit minimax |
22/21 | 99.2215 | |
17/15 | 99.2415 | |
26/21 | 99.2437 | |
6/5 | 99.2552 | 5-odd-limit minimax |
13/11 | 99.2807 | |
20/17 | 99.3096 | |
10/9 | 99.3232 | |
24/19 | 99.4448 | |
19/17 | 99.4684 | |
24/17 | 99.4999 | |
19/18 | 99.5079 | |
17/16 | 99.5495 | |
4/3 | 99.6090 |