72ed5

From Xenharmonic Wiki
Jump to navigation Jump to search
← 71ed5 72ed5 73ed5 →
Prime factorization 23 × 32
Step size 38.6988¢ 
Octave 31\72ed5 (1199.66¢)
(semiconvergent)
Twelfth 49\72ed5 (1896.24¢)
Consistency limit 12
Distinct consistency limit 8

Division of the 5th harmonic into 72 equal parts (72ed5) is related to 31 edo, but with the 5/1 rather than the 2/1 being just. The octave is slightly compressed (about 0.3372 cents) and the step size is about 38.6988 cents. This tuning has a meantone fifth as the number of divisions of the 5th harmonic is multiple of 4.

Harmonics

Approximation of harmonics in 72ed5
Harmonic 2 3 4 5 6 7 8 9
Error Absolute (¢) -0.34 -5.71 -0.67 +0.00 -6.05 -2.03 -1.01 -11.43
Relative (%) -0.9 -14.8 -1.7 +0.0 -15.6 -5.2 -2.6 -29.5
Steps
(reduced)
31
(31)
49
(49)
62
(62)
72
(0)
80
(8)
87
(15)
93
(21)
98
(26)
Approximation of harmonics in 72ed5
Harmonic 10 11 12 13 14 15 16 17
Error Absolute (¢) -0.34 -10.55 -6.39 +9.83 -2.37 -5.71 -1.35 +9.79
Relative (%) -0.9 -27.3 -16.5 +25.4 -6.1 -14.8 -3.5 +25.3
Steps
(reduced)
103
(31)
107
(35)
111
(39)
115
(43)
118
(46)
121
(49)
124
(52)
127
(55)

31edo for comparison:

Approximation of harmonics in 31edo
Harmonic 2 3 4 5 6 7 8 9
Error Absolute (¢) +0.00 -5.18 +0.00 +0.78 -5.18 -1.08 +0.00 -10.36
Relative (%) +0.0 -13.4 +0.0 +2.0 -13.4 -2.8 +0.0 -26.8
Steps
(reduced)
31
(0)
49
(18)
62
(0)
72
(10)
80
(18)
87
(25)
93
(0)
98
(5)
Approximation of harmonics in 31edo
Harmonic 10 11 12 13 14 15 16 17
Error Absolute (¢) +0.78 -9.38 -5.18 +11.09 -1.08 -4.40 +0.00 +11.17
Relative (%) +2.0 -24.2 -13.4 +28.6 -2.8 -11.4 +0.0 +28.9
Steps
(reduced)
103
(10)
107
(14)
111
(18)
115
(22)
118
(25)
121
(28)
124
(0)
127
(3)

Intervals

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 38.6988 46/45, 45/44
2 77.3976 23/22, 68/65, 22/21
3 116.0964 15/14 pseudo-16/15
4 154.7952 35/32, 23/21
5 193.4940 19/17, 85/76
6 232.1928 8/7
7 270.8916 76/65 pseudo-7/6
8 309.5904 55/46 pseudo-6/5
9 348.2892 11/9
10 386.9880 5/4
11 425.6868 23/18
12 464.3856 17/13
13 503.0844 pseudo-4/3
14 541.7832 175/128, 26/19
15 580.4820 7/5
16 619.1808 10/7
17 657.8796 19/13
18 696.5784 meantone fifth
(pseudo-3/2)
19 735.2772 55/36, 26/17
20 773.9760 25/16, 36/23
21 812.6748 8/5
22 851.3736 85/52, 18/11
23 890.0724 pseudo-5/3
24 928.7712 65/38
25 967.4700 7/4
26 1006.1688 25/14
27 1044.8676 95/52, 64/35
28 1083.5664 pseudo-15/8
29 1122.2652 21/11, 65/34, 44/23
30 1160.9640 45/23
31 1199.6628 2/1
32 1238.3617 45/22
33 1277.0605 23/11
34 1315.7593
35 1354.4581 35/16
36 1393.1569 38/17, 85/38 meantone major second plus an octave
37 1431.8557 16/7
38 1470.5545
39 1509.2533 55/23
40 1547.9521 22/9
41 1586.6509 5/2
42 1625.3497 23/9
43 1664.0485 34/13
44 1702.7473 pseudo-8/3
45 1741.4461 175/64, 52/19
46 1780.1449 14/5
47 1818.8437 20/7
48 1857.5425 38/13
49 1896.2413 pseudo-3/1
50 1934.9401 55/18, 52/17
51 1973.6389 25/8
52 2012.3377 115/36, 16/5
53 2051.0365 85/26, 36/11
54 2089.7353 meantone major sixth plus an octave
(pseudo-10/3)
55 2128.4341 65/19
56 2167.1329 7/2
57 2205.8317 25/7
58 2244.5305 95/26, 128/35
59 2283.2293 pseudo-15/4
60 2321.9281 65/17
61 2360.6269 90/23
62 2399.3257 4/1
63 2438.0245 45/11
64 2476.7233 46/11
65 2515.4221
66 2554.1209 35/8
67 2592.8197 76/17, 85/19
68 2631.5185 32/7
69 2670.2173 14/3
70 2708.9161 110/23
71 2747.6149 44/9
72 2786.3137 exact 5/1 just major third plus two octaves