12ed5

From Xenharmonic Wiki
Jump to navigation Jump to search
← 11ed5 12ed5 13ed5 →
Prime factorization 22 × 3
Step size 232.193¢ 
Octave 5\12ed5 (1160.96¢)
Twelfth 8\12ed5 (1857.54¢) (→2\3ed5)
Consistency limit 6
Distinct consistency limit 3
Special properties

Division of the 5th harmonic into 12 equal parts (12ed5) is related to the mothra temperament and the quadrawell temperament. The step size about 232.1928 cents, corresponding to 5.1681 edo, very nearly every 6th step of 31edo. This tuning has a meantone fifth as the number of divisions of the 5th harmonic is multiple of 4.

Intervals

degree cents value corresponding
JI intervals
comments
0 0.0000 exact 1/1
1 232.1928 8/7
2 464.3856 17/13
3 696.5784 meantone fifth
(pseudo-3/2)
4 928.7712 65/38
5 1160.9640 45/23
6 1393.1569 38/17, 85/38 meantone major second plus an octave
7 1625.3497 23/9
8 1857.5425 38/13
9 2089.7353 meantone major sixth plus an octave
(pseudo-10/3)
10 2321.9281 65/17
11 2554.1209 35/8
12 2786.3137 exact 5/1 just major third plus two octaves

Harmonics

Approximation of harmonics in 12ed5
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -39 -44 -78 +0 -83 +114 +115 -89 -39 +28 +110
Relative (%) -16.8 -19.1 -33.6 +0.0 -35.9 +49.1 +49.6 -38.3 -16.8 +12.1 +47.2
Steps
(reduced)
5
(5)
8
(8)
10
(10)
12
(0)
13
(1)
15
(3)
16
(4)
16
(4)
17
(5)
18
(6)
19
(7)
Approximation of harmonics in 12ed5
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -29 +75 -44 +76 -29 +104 +11 -78 +70 -11 -88
Relative (%) -12.4 +32.3 -19.1 +32.8 -12.4 +44.9 +4.6 -33.6 +30.0 -4.7 -37.8
Steps
(reduced)
19
(7)
20
(8)
20
(8)
21
(9)
21
(9)
22
(10)
22
(10)
22
(10)
23
(11)
23
(11)
23
(11)