111ed12
Jump to navigation
Jump to search
Prime factorization
3 × 37
Step size
38.7564¢
Octave
31\111ed12 (1201.45¢)
Twelfth
49\111ed12 (1899.06¢)
Consistency limit
11
Distinct consistency limit
9
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 110ed12 | 111ed12 | 112ed12 → |
111 equal divisions of the 12th harmonic (abbreviated 111ed12) is a nonoctave tuning system that divides the interval of 12/1 into 111 equal parts of about 38.8 ¢ each. Each step represents a frequency ratio of 121/111, or the 111th root of 12.
111ed12 is nearly identical to 31edo but with the 12/1 rather than the 2/1 being just. The octave is about 1.45 cents stretched compared to 31edo.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 38.756 | 43/42, 44/43, 45/44, 46/45, 47/46 |
2 | 77.513 | 23/22, 45/43 |
3 | 116.269 | 31/29, 46/43, 47/44 |
4 | 155.025 | 35/32, 47/43 |
5 | 193.782 | 19/17, 47/42 |
6 | 232.538 | 8/7 |
7 | 271.294 | |
8 | 310.051 | |
9 | 348.807 | 11/9 |
10 | 387.564 | 5/4 |
11 | 426.32 | 23/18, 32/25 |
12 | 465.076 | 17/13 |
13 | 503.833 | |
14 | 542.589 | 26/19, 41/30 |
15 | 581.345 | 7/5 |
16 | 620.102 | |
17 | 658.858 | 19/13, 41/28 |
18 | 697.614 | |
19 | 736.371 | 26/17 |
20 | 775.127 | 36/23, 47/30 |
21 | 813.883 | 8/5 |
22 | 852.64 | 18/11 |
23 | 891.396 | |
24 | 930.152 | |
25 | 968.909 | 7/4 |
26 | 1007.665 | 34/19, 43/24 |
27 | 1046.421 | |
28 | 1085.178 | 43/23 |
29 | 1123.934 | 44/23 |
30 | 1162.691 | 45/23, 47/24 |
31 | 1201.447 | 2/1 |
32 | 1240.203 | 43/21, 45/22 |
33 | 1278.96 | 23/11, 44/21 |
34 | 1317.716 | 15/7 |
35 | 1356.472 | 35/16, 46/21 |
36 | 1395.229 | 47/21 |
37 | 1433.985 | |
38 | 1472.741 | |
39 | 1511.498 | |
40 | 1550.254 | |
41 | 1589.01 | |
42 | 1627.767 | 41/16 |
43 | 1666.523 | 34/13 |
44 | 1705.279 | |
45 | 1744.036 | |
46 | 1782.792 | 14/5 |
47 | 1821.549 | 43/15 |
48 | 1860.305 | 41/14 |
49 | 1899.061 | |
50 | 1937.818 | 46/15 |
51 | 1976.574 | 47/15 |
52 | 2015.33 | 16/5 |
53 | 2054.087 | 36/11 |
54 | 2092.843 | |
55 | 2131.599 | 24/7 |
56 | 2170.356 | 7/2 |
57 | 2209.112 | 43/12 |
58 | 2247.868 | 11/3 |
59 | 2286.625 | 15/4 |
60 | 2325.381 | 23/6 |
61 | 2364.137 | 47/12 |
62 | 2402.894 | |
63 | 2441.65 | 41/10 |
64 | 2480.406 | |
65 | 2519.163 | 30/7 |
66 | 2557.919 | |
67 | 2596.676 | |
68 | 2635.432 | |
69 | 2674.188 | |
70 | 2712.945 | |
71 | 2751.701 | |
72 | 2790.457 | |
73 | 2829.214 | 41/8 |
74 | 2867.97 | |
75 | 2906.726 | |
76 | 2945.483 | |
77 | 2984.239 | 28/5 |
78 | 3022.995 | |
79 | 3061.752 | 41/7 |
80 | 3100.508 | 6/1 |
81 | 3139.264 | |
82 | 3178.021 | |
83 | 3216.777 | |
84 | 3255.534 | |
85 | 3294.29 | |
86 | 3333.046 | |
87 | 3371.803 | |
88 | 3410.559 | 43/6 |
89 | 3449.315 | 22/3 |
90 | 3488.072 | 15/2 |
91 | 3526.828 | 23/3 |
92 | 3565.584 | 47/6 |
93 | 3604.341 | |
94 | 3643.097 | 41/5 |
95 | 3681.853 | |
96 | 3720.61 | |
97 | 3759.366 | |
98 | 3798.122 | |
99 | 3836.879 | |
100 | 3875.635 | |
101 | 3914.391 | |
102 | 3953.148 | |
103 | 3991.904 | |
104 | 4030.661 | 41/4 |
105 | 4069.417 | 21/2 |
106 | 4108.173 | |
107 | 4146.93 | |
108 | 4185.686 | |
109 | 4224.442 | |
110 | 4263.199 | |
111 | 4301.955 | 12/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.4 | -2.9 | +2.9 | +4.1 | -1.4 | +3.0 | +4.3 | -5.8 | +5.6 | -4.4 | +0.0 |
Relative (%) | +3.7 | -7.5 | +7.5 | +10.7 | -3.7 | +7.7 | +11.2 | -14.9 | +14.4 | -11.3 | +0.0 | |
Steps (reduced) |
31 (31) |
49 (49) |
62 (62) |
72 (72) |
80 (80) |
87 (87) |
93 (93) |
98 (98) |
103 (103) |
107 (107) |
111 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +16.5 | +4.4 | +1.2 | +5.8 | +17.1 | -4.3 | +18.3 | +7.0 | +0.1 | -2.9 | -2.4 |
Relative (%) | +42.5 | +11.4 | +3.2 | +14.9 | +44.1 | -11.2 | +47.3 | +18.2 | +0.2 | -7.6 | -6.2 | |
Steps (reduced) |
115 (4) |
118 (7) |
121 (10) |
124 (13) |
127 (16) |
129 (18) |
132 (21) |
134 (23) |
136 (25) |
138 (27) |
140 (29) |