111ed12
Jump to navigation
Jump to search
Prime factorization
3 × 37
Step size
38.7564¢
Octave
31\111ed12 (1201.45¢)
Twelfth
49\111ed12 (1899.06¢)
Consistency limit
11
Distinct consistency limit
9
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 110ed12 | 111ed12 | 112ed12 → |
111 equal divisions of the 12th harmonic (abbreviated 111ed12) is a nonoctave tuning system that divides the interval of 12/1 into 111 equal parts of about 38.8 ¢ each. Each step represents a frequency ratio of 121/111, or the 111th root of 12.
111ed12 is nearly identical to 31edo but with the 12/1 rather than the 2/1 being just. The octave is about 1.45 cents stretched compared to 31edo.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 38.8 | 43/42, 44/43, 45/44, 46/45, 47/46 |
2 | 77.5 | 23/22, 45/43 |
3 | 116.3 | 31/29, 46/43, 47/44 |
4 | 155 | 35/32, 47/43 |
5 | 193.8 | 19/17, 47/42 |
6 | 232.5 | 8/7 |
7 | 271.3 | |
8 | 310.1 | |
9 | 348.8 | 11/9 |
10 | 387.6 | 5/4 |
11 | 426.3 | 23/18, 32/25 |
12 | 465.1 | 17/13 |
13 | 503.8 | |
14 | 542.6 | 26/19, 41/30 |
15 | 581.3 | 7/5 |
16 | 620.1 | |
17 | 658.9 | 19/13, 41/28 |
18 | 697.6 | |
19 | 736.4 | 26/17 |
20 | 775.1 | 36/23, 47/30 |
21 | 813.9 | 8/5 |
22 | 852.6 | 18/11 |
23 | 891.4 | |
24 | 930.2 | |
25 | 968.9 | 7/4 |
26 | 1007.7 | 34/19, 43/24 |
27 | 1046.4 | |
28 | 1085.2 | 43/23 |
29 | 1123.9 | 44/23 |
30 | 1162.7 | 45/23, 47/24 |
31 | 1201.4 | 2/1 |
32 | 1240.2 | 43/21, 45/22 |
33 | 1279 | 23/11, 44/21 |
34 | 1317.7 | 15/7 |
35 | 1356.5 | 35/16, 46/21 |
36 | 1395.2 | 47/21 |
37 | 1434 | |
38 | 1472.7 | |
39 | 1511.5 | |
40 | 1550.3 | |
41 | 1589 | |
42 | 1627.8 | 41/16 |
43 | 1666.5 | 34/13 |
44 | 1705.3 | |
45 | 1744 | |
46 | 1782.8 | 14/5 |
47 | 1821.5 | 43/15 |
48 | 1860.3 | 41/14 |
49 | 1899.1 | |
50 | 1937.8 | 46/15 |
51 | 1976.6 | 47/15 |
52 | 2015.3 | 16/5 |
53 | 2054.1 | 36/11 |
54 | 2092.8 | |
55 | 2131.6 | 24/7 |
56 | 2170.4 | 7/2 |
57 | 2209.1 | 43/12 |
58 | 2247.9 | 11/3 |
59 | 2286.6 | 15/4 |
60 | 2325.4 | 23/6 |
61 | 2364.1 | 47/12 |
62 | 2402.9 | |
63 | 2441.7 | 41/10 |
64 | 2480.4 | |
65 | 2519.2 | 30/7 |
66 | 2557.9 | |
67 | 2596.7 | |
68 | 2635.4 | |
69 | 2674.2 | |
70 | 2712.9 | |
71 | 2751.7 | |
72 | 2790.5 | |
73 | 2829.2 | 41/8 |
74 | 2868 | |
75 | 2906.7 | |
76 | 2945.5 | |
77 | 2984.2 | 28/5 |
78 | 3023 | |
79 | 3061.8 | 41/7 |
80 | 3100.5 | 6/1 |
81 | 3139.3 | |
82 | 3178 | |
83 | 3216.8 | |
84 | 3255.5 | |
85 | 3294.3 | |
86 | 3333 | |
87 | 3371.8 | |
88 | 3410.6 | 43/6 |
89 | 3449.3 | 22/3 |
90 | 3488.1 | 15/2 |
91 | 3526.8 | 23/3 |
92 | 3565.6 | 47/6 |
93 | 3604.3 | |
94 | 3643.1 | 41/5 |
95 | 3681.9 | |
96 | 3720.6 | |
97 | 3759.4 | |
98 | 3798.1 | |
99 | 3836.9 | |
100 | 3875.6 | |
101 | 3914.4 | |
102 | 3953.1 | |
103 | 3991.9 | |
104 | 4030.7 | 41/4 |
105 | 4069.4 | 21/2 |
106 | 4108.2 | |
107 | 4146.9 | |
108 | 4185.7 | |
109 | 4224.4 | |
110 | 4263.2 | |
111 | 4302 | 12/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.4 | -2.9 | +2.9 | +4.1 | -1.4 | +3.0 | +4.3 | -5.8 | +5.6 | -4.4 | +0.0 |
Relative (%) | +3.7 | -7.5 | +7.5 | +10.7 | -3.7 | +7.7 | +11.2 | -14.9 | +14.4 | -11.3 | +0.0 | |
Steps (reduced) |
31 (31) |
49 (49) |
62 (62) |
72 (72) |
80 (80) |
87 (87) |
93 (93) |
98 (98) |
103 (103) |
107 (107) |
111 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +16.5 | +4.4 | +1.2 | +5.8 | +17.1 | -4.3 | +18.3 | +7.0 | +0.1 | -2.9 | -2.4 |
Relative (%) | +42.5 | +11.4 | +3.2 | +14.9 | +44.1 | -11.2 | +47.3 | +18.2 | +0.2 | -7.6 | -6.2 | |
Steps (reduced) |
115 (4) |
118 (7) |
121 (10) |
124 (13) |
127 (16) |
129 (18) |
132 (21) |
134 (23) |
136 (25) |
138 (27) |
140 (29) |