111ed12

From Xenharmonic Wiki
Jump to navigation Jump to search
← 110ed12 111ed12 112ed12 →
Prime factorization 3 × 37
Step size 38.7564 ¢ 
Octave 31\111ed12 (1201.45 ¢)
Twelfth 49\111ed12 (1899.06 ¢)
Consistency limit 12
Distinct consistency limit 9

111 equal divisions of the 12th harmonic (abbreviated 111ed12) is a nonoctave tuning system that divides the interval of 12/1 into 111 equal parts of about 38.8 ¢ each. Each step represents a frequency ratio of 121/111, or the 111th root of 12.

Theory

111ed12 is nearly identical to 31edo, but with the 12th harmonic rather than the octave being just. The octave is about 1.45 cents stretched compared to 31edo. Like 31edo, 111ed12 is consistent through the 12-integer-limit, and like 80ed6, it optimizes for the 11-limit by trading the accuracy of the 5th and 7th harmonics for improved 3rd and 11th harmonics. The stretch is quite mild, but still considerable: the 11th harmonic is only 4.4 cents flat of just (in comparison, 31edo's 11th harmonic is 9.4 cents flat). Also improved is the 23rd harmonic, which is now only 2.4 cents flat of just.

Harmonics

Approximation of harmonics in 111ed12
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.4 -2.9 +2.9 +4.1 -1.4 +3.0 +4.3 -5.8 +5.6 -4.4 +0.0
Relative (%) +3.7 -7.5 +7.5 +10.7 -3.7 +7.7 +11.2 -14.9 +14.4 -11.3 +0.0
Steps
(reduced)
31
(31)
49
(49)
62
(62)
72
(72)
80
(80)
87
(87)
93
(93)
98
(98)
103
(103)
107
(107)
111
(0)
Approximation of harmonics in 111ed12 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) +16.5 +4.4 +1.2 +5.8 +17.1 -4.3 +18.3 +7.0 +0.1 -2.9 -2.4 +1.4
Relative (%) +42.5 +11.4 +3.2 +14.9 +44.1 -11.2 +47.3 +18.2 +0.2 -7.6 -6.2 +3.7
Steps
(reduced)
115
(4)
118
(7)
121
(10)
124
(13)
127
(16)
129
(18)
132
(21)
134
(23)
136
(25)
138
(27)
140
(29)
142
(31)

Subsets and supersets

Since 111 factors into primes as 3 × 37, 111ed12 contains 3ed12 and 37ed12 as subset ed12's.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 38.8 43/42, 44/43, 45/44, 46/45, 47/46
2 77.5 23/22, 45/43
3 116.3 31/29, 46/43, 47/44
4 155 35/32, 47/43
5 193.8 19/17, 47/42
6 232.5 8/7
7 271.3
8 310.1
9 348.8 11/9
10 387.6 5/4
11 426.3 23/18, 32/25
12 465.1 17/13
13 503.8
14 542.6 26/19, 41/30
15 581.3 7/5
16 620.1
17 658.9 19/13, 41/28
18 697.6
19 736.4 26/17
20 775.1 36/23, 47/30
21 813.9 8/5
22 852.6 18/11
23 891.4
24 930.2
25 968.9 7/4
26 1007.7 34/19, 43/24
27 1046.4
28 1085.2 43/23
29 1123.9 44/23
30 1162.7 45/23, 47/24
31 1201.4 2/1
32 1240.2 43/21, 45/22
33 1279 23/11, 44/21
34 1317.7 15/7
35 1356.5 35/16, 46/21
36 1395.2 47/21
37 1434
38 1472.7
39 1511.5
40 1550.3
41 1589
42 1627.8 41/16
43 1666.5 34/13
44 1705.3
45 1744
46 1782.8 14/5
47 1821.5 43/15
48 1860.3 41/14
49 1899.1
50 1937.8 46/15
51 1976.6 47/15
52 2015.3 16/5
53 2054.1 36/11
54 2092.8
55 2131.6 24/7
56 2170.4 7/2
57 2209.1 43/12
58 2247.9 11/3
59 2286.6 15/4
60 2325.4 23/6
61 2364.1 47/12
62 2402.9
63 2441.7 41/10
64 2480.4
65 2519.2 30/7
66 2557.9
67 2596.7
68 2635.4
69 2674.2
70 2712.9
71 2751.7
72 2790.5
73 2829.2 41/8
74 2868
75 2906.7
76 2945.5
77 2984.2 28/5
78 3023
79 3061.8 41/7
80 3100.5 6/1
81 3139.3
82 3178
83 3216.8
84 3255.5
85 3294.3
86 3333
87 3371.8
88 3410.6 43/6
89 3449.3 22/3
90 3488.1 15/2
91 3526.8 23/3
92 3565.6 47/6
93 3604.3
94 3643.1 41/5
95 3681.9
96 3720.6
97 3759.4
98 3798.1
99 3836.9
100 3875.6
101 3914.4
102 3953.1
103 3991.9
104 4030.7 41/4
105 4069.4 21/2
106 4108.2
107 4146.9
108 4185.7
109 4224.4
110 4263.2
111 4302 12/1

See also