111ed12

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 110ed12 111ed12 112ed12 →
Prime factorization 3 × 37
Step size 38.7564¢ 
Octave 31\111ed12 (1201.45¢)
Twelfth 49\111ed12 (1899.06¢)
Consistency limit 11
Distinct consistency limit 9

111 equal divisions of the 12th harmonic (abbreviated 111ed12) is a nonoctave tuning system that divides the interval of 12/1 into 111 equal parts of about 38.8 ¢ each. Each step represents a frequency ratio of 121/111, or the 111th root of 12.

111ed12 is nearly identical to 31edo but with the 12/1 rather than the 2/1 being just. The octave is about 1.45 cents stretched compared to 31edo.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 38.756 43/42, 44/43, 45/44, 46/45, 47/46
2 77.513 23/22, 45/43
3 116.269 31/29, 46/43, 47/44
4 155.025 35/32, 47/43
5 193.782 19/17, 47/42
6 232.538 8/7
7 271.294
8 310.051
9 348.807 11/9
10 387.564 5/4
11 426.32 23/18, 32/25
12 465.076 17/13
13 503.833
14 542.589 26/19, 41/30
15 581.345 7/5
16 620.102
17 658.858 19/13, 41/28
18 697.614
19 736.371 26/17
20 775.127 36/23, 47/30
21 813.883 8/5
22 852.64 18/11
23 891.396
24 930.152
25 968.909 7/4
26 1007.665 34/19, 43/24
27 1046.421
28 1085.178 43/23
29 1123.934 44/23
30 1162.691 45/23, 47/24
31 1201.447 2/1
32 1240.203 43/21, 45/22
33 1278.96 23/11, 44/21
34 1317.716 15/7
35 1356.472 35/16, 46/21
36 1395.229 47/21
37 1433.985
38 1472.741
39 1511.498
40 1550.254
41 1589.01
42 1627.767 41/16
43 1666.523 34/13
44 1705.279
45 1744.036
46 1782.792 14/5
47 1821.549 43/15
48 1860.305 41/14
49 1899.061
50 1937.818 46/15
51 1976.574 47/15
52 2015.33 16/5
53 2054.087 36/11
54 2092.843
55 2131.599 24/7
56 2170.356 7/2
57 2209.112 43/12
58 2247.868 11/3
59 2286.625 15/4
60 2325.381 23/6
61 2364.137 47/12
62 2402.894
63 2441.65 41/10
64 2480.406
65 2519.163 30/7
66 2557.919
67 2596.676
68 2635.432
69 2674.188
70 2712.945
71 2751.701
72 2790.457
73 2829.214 41/8
74 2867.97
75 2906.726
76 2945.483
77 2984.239 28/5
78 3022.995
79 3061.752 41/7
80 3100.508 6/1
81 3139.264
82 3178.021
83 3216.777
84 3255.534
85 3294.29
86 3333.046
87 3371.803
88 3410.559 43/6
89 3449.315 22/3
90 3488.072 15/2
91 3526.828 23/3
92 3565.584 47/6
93 3604.341
94 3643.097 41/5
95 3681.853
96 3720.61
97 3759.366
98 3798.122
99 3836.879
100 3875.635
101 3914.391
102 3953.148
103 3991.904
104 4030.661 41/4
105 4069.417 21/2
106 4108.173
107 4146.93
108 4185.686
109 4224.442
110 4263.199
111 4301.955 12/1

Harmonics

Approximation of harmonics in 111ed12
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.4 -2.9 +2.9 +4.1 -1.4 +3.0 +4.3 -5.8 +5.6 -4.4 +0.0
Relative (%) +3.7 -7.5 +7.5 +10.7 -3.7 +7.7 +11.2 -14.9 +14.4 -11.3 +0.0
Steps
(reduced)
31
(31)
49
(49)
62
(62)
72
(72)
80
(80)
87
(87)
93
(93)
98
(98)
103
(103)
107
(107)
111
(0)
Approximation of harmonics in 111ed12
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +16.5 +4.4 +1.2 +5.8 +17.1 -4.3 +18.3 +7.0 +0.1 -2.9 -2.4
Relative (%) +42.5 +11.4 +3.2 +14.9 +44.1 -11.2 +47.3 +18.2 +0.2 -7.6 -6.2
Steps
(reduced)
115
(4)
118
(7)
121
(10)
124
(13)
127
(16)
129
(18)
132
(21)
134
(23)
136
(25)
138
(27)
140
(29)