107ed11

From Xenharmonic Wiki
Jump to navigation Jump to search
← 106ed11 107ed11 108ed11 →
Prime factorization 107 (prime)
Step size 38.7974 ¢ 
Octave 31\107ed11 (1202.72 ¢)
Twelfth 49\107ed11 (1901.07 ¢)
(semiconvergent)
Consistency limit 12
Distinct consistency limit 9

107 equal divisions of the 11th harmonic (abbreviated 107ed11) is a nonoctave tuning system that divides the interval of 11/1 into 107 equal parts of about 38.8 ¢ each. Each step represents a frequency ratio of 111/107, or the 107th root of 11.

Theory

107ed11 is related to 31edo, but with the 11/1 rather than the 2/1 being just. The octave is stretched by 2.718 ¢, which is interesting in that it is almost exactly e cents. Like 31edo, 107ed11 is consistent through the 12-integer-limit, but unlike 31edo it has a discrepancy for the 13th harmonic.

Harmonics

Approximation of harmonics in 107ed11
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +2.7 -0.9 +5.4 +7.1 +1.8 +6.5 +8.2 -1.8 +9.8 +0.0 +4.6
Relative (%) +7.0 -2.3 +14.0 +18.3 +4.7 +16.9 +21.0 -4.6 +25.3 +0.0 +11.7
Steps
(reduced)
31
(31)
49
(49)
62
(62)
72
(72)
80
(80)
87
(87)
93
(93)
98
(98)
103
(103)
107
(0)
111
(4)
Approximation of harmonics in 107ed11 (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -17.6 +9.3 +6.2 +10.9 -16.5 +0.9 -15.1 +12.5 +5.7 +2.7 +3.4 +7.3
Relative (%) -45.4 +23.9 +16.0 +28.0 -42.5 +2.4 -38.8 +32.3 +14.6 +7.0 +8.7 +18.7
Steps
(reduced)
114
(7)
118
(11)
121
(14)
124
(17)
126
(19)
129
(22)
131
(24)
134
(27)
136
(29)
138
(31)
140
(33)
142
(35)

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 38.8 43/42, 44/43, 45/44, 46/45
2 77.6 23/22, 45/43
3 116.4 31/29, 46/43
4 155.2 35/32
5 194 19/17, 28/25
6 232.8 8/7
7 271.6
8 310.4
9 349.2 11/9
10 388 5/4
11 426.8 32/25, 41/32
12 465.6 17/13
13 504.4
14 543.2 26/19
15 582 7/5
16 620.8
17 659.6 41/28
18 698.4
19 737.1 26/17
20 775.9 36/23
21 814.7 8/5
22 853.5 18/11
23 892.3
24 931.1 12/7
25 969.9 7/4
26 1008.7 34/19, 43/24
27 1047.5 11/6
28 1086.3 15/8
29 1125.1 23/12, 44/23
30 1163.9 45/23
31 1202.7
32 1241.5 41/20, 43/21
33 1280.3 44/21
34 1319.1 15/7
35 1357.9 46/21
36 1396.7
37 1435.5 39/17
38 1474.3
39 1513.1
40 1551.9
41 1590.7
42 1629.5 41/16
43 1668.3
44 1707.1
45 1745.9
46 1784.7 14/5
47 1823.5 43/15
48 1862.3 41/14, 44/15
49 1901.1 3/1
50 1939.9 46/15
51 1978.7
52 2017.5
53 2056.3
54 2095.1
55 2133.9 24/7
56 2172.7
57 2211.4 43/12
58 2250.2 11/3
59 2289 15/4
60 2327.8 23/6
61 2366.6
62 2405.4
63 2444.2 41/10
64 2483 21/5
65 2521.8
66 2560.6
67 2599.4
68 2638.2
69 2677
70 2715.8 24/5
71 2754.6
72 2793.4
73 2832.2
74 2871 21/4
75 2909.8 43/8
76 2948.6
77 2987.4
78 3026.2 23/4
79 3065
80 3103.8 6/1
81 3142.6 43/7
82 3181.4 44/7
83 3220.2 45/7
84 3259 46/7
85 3297.8
86 3336.6
87 3375.4
88 3414.2
89 3453
90 3491.8
91 3530.6
92 3569.4
93 3608.2
94 3647
95 3685.7 42/5
96 3724.5 43/5
97 3763.3 44/5
98 3802.1 9/1
99 3840.9 46/5
100 3879.7
101 3918.5
102 3957.3
103 3996.1
104 4034.9
105 4073.7
106 4112.5 43/4
107 4151.3 11/1

See also