Fractional-octave temperaments
All temperaments on this page have a fractional-octave period, such as 1\26, 1\31, or 1\41.
Temperaments discussed elsewhere include:
- 1\2 period temperaments
- 1\3 period temperaments
- 1\4 period temperaments
- 1\5 period temperaments
- 1\6 period temperaments
- Akjaysmic temperaments (1\7 period)
- Octoid, octant (1\8 period)
- Tritrizo temperaments (1\9 period)
- Linus temperaments (1\10 period)
- Hendecatonic, undeka (1\11 period)
- Compton, atomic (1\12 period)
- Triskaidekic, tridecatonic, trideci (1\13 period)
- Pentadecal, quindecic (1\15 period)
- Hexadecoid, sedecic (1\16 period)
- Chlorine (1\17 period)
- Hemiennealimmal (1\18 period)
- Enneadecal, meanmag (1\19 period)
- Degrees (1\20 period)
- Akjayland (1\21 period)
- Icosidillic (1\22 period)
- Icositritonic (1\23 period)
- Hours (1\24 period)
- Bosonic (1\26 period)
- Trinealimmal, cobalt (1\27 period)
- Oquatonic (1\28 period)
- Mystery (1\29 period)
- Birds (1\31 period)
- Decades (1\36 period)
- Hemienneadecal (1\38 period)
- Counterpyth temperaments (1\41 period)
- Meridic (1\43 period)
- Palladium (1\46 period)
- Mercator temperaments (1\53 period)
- Omicronbeta (1\72 period)
- Octogintic (1\80 period)
- Garistearn (1\94 period)
- Undecentic (1\99 period)
- Schisennealimmal (1\171 period)
- Lunennealimmal (1\441 period)
14th-octave temperaments
While 14edo is poor in LCJI harmonics, some of its multiples (such as 224edo and 742edo) are members of zeta edo list.
Silicon
The name of silicon temperament comes from the 14th element. Defined upwards to the 13-limit. In 742edo, what's also unique is that it is generated by a 53edo fifth intermingled with 14edo periods.
5-limit
Subgroup: 2.3.5
Comma list: [-145 112 -14⟩
Mapping generators: ~282429536481/268435456000, ~3/2
Mapping: [⟨14 14 -33], ⟨0 1 8]]
Optimal tuning (CTE): ~3/2 = 701.864
7-limit
Subgroup: 2.3.5.7
Comma list: 14348907/14336000, 56358560858112/56296884765625
Mapping generators: ~6125/5832, ~3/2
Mapping: [⟨14 14 -33 113], ⟨0 1 8 -9]]
Optimal tuning (CTE): ~3/2 = 701.870
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 1240029/1239040, 2359296/2358125
Mapping generators: ~605/576, ~3/2
Mapping: [⟨14 14 -33 113 73], ⟨0 1 8 -9 -3]]
Optimal tuning (CTE): ~3/2 = 701.872
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 4096/4095, 9801/9800, 67392/67375, 59535/59488
Mapping generators: ~104/99, ~3/2
Mapping: [⟨14 14 -33 113 73 60], ⟨0 1 8 -9 -3 -1]]
Optimal tuning (CTE): ~3/2 = 701.873
37th-octave temperaments
37EDO is accurate for harmonics 5, 7, 11, and 13, so various 37th-octave temperaments actually make sense.
Rubidium
The name of rubidium temperament comes from Rubidium, the 37th element.
Subgroup: 2.3.5.7
Comma list: 3136/3125, 4194304/4117715
Mapping: [⟨37 0 86 104], ⟨0 1 0 0]]
POTE generator: ~3/2 = 703.3903
Badness: 0.312105
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 1375/1372, 65536/65219
Mapping: [⟨37 0 86 104 128], ⟨0 1 0 0 0]]
POTE generator: ~3/2 = 703.0355
Vals: Template:Val list
Badness: 0.101001
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 176/175, 640/637, 847/845, 1375/1372
Mapping: [⟨37 0 86 104 128 137], ⟨0 1 0 0 0 0]]
POTE generator: ~3/2 = 703.0520
Vals: Template:Val list
Badness: 0.048732
Triacontaheptoid
Subgroup: 2.3.5.7
Comma list: 244140625/242121642, 283115520/282475249
Mapping: [⟨37 23 74 92], ⟨0 3 1 1]]
POTE generator: ~5/4 = 385.3041
Badness: 0.784746
11-limit
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 4000/3993, 226492416/226474325
Mapping: [⟨37 23 74 92 128], ⟨0 3 1 1 0]]
POTE generator: ~5/4 = 385.3281
Vals: Template:Val list
Badness: 0.167327
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 1375/1372, 4000/3993, 15379/15360
Mapping: [⟨37 23 74 92 128 125], ⟨0 3 1 1 0 1]]
POTE generator: ~5/4 = 385.3067
Vals: Template:Val list
Badness: 0.076183
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 625/624, 715/714, 1225/1224, 4000/3993, 11271/11264
Mapping: [⟨37 23 74 92 128 125 175], ⟨0 3 1 1 0 1 -2]]
POTE generator: ~5/4 = 385.3427
Vals: Template:Val list
Badness: 0.052475
65th-octave temperaments
65EDO is accurate for harmonics 3, 5, and 11, so various 65th-octave temperaments actually make sense.
Terbium
The name of terbium temperament comes from Terbium, the 65th element.
Subgroup: 2.3.5.7
Comma list: 32805/32768, 78732/78125
Mapping: [⟨65 103 151 0], ⟨0 0 0 1]]
POTE generator: ~8/7 = 230.8641
Badness: 0.169778
11-limit
Subgroup: 2.3.5.7.11
Comma list: 243/242, 4000/3993, 5632/5625
Mapping: [⟨65 103 151 0 225], ⟨0 0 0 1 0]]
POTE generator: ~8/7 = 230.4285
Vals: Template:Val list
Badness: 0.059966
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 351/350, 2080/2079, 3584/3575
Mapping: [⟨65 103 151 0 225 58], ⟨0 0 0 1 0 1]]
POTE generator: ~8/7 = 230.0388
Vals: Template:Val list
Badness: 0.036267
91st-octave temperaments
Protactinium
Defined as the 364 & 1547 temperament and named after the 91st element.
Subgroup: 2.3.5.7.11.13
Comma list: 4096/4095, 91125/91091, 2912000/2910897, 369754/369603
Mapping: [⟨91 91 371 149 581 390], ⟨0 1 -3 -2 -5 -1]]
Mapping generators: ~1728/1715, ~3/2
Optimal tuning (CTE): ~3/2 = 702.020c
Optimal GPV sequence: 364, 1183, 1547
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 4096/4095, 14400/14399, 42500/42471, 75735/75712, 2100875/2100384
Mapping: [Template:91 91 371 149 581 390 159, ⟨0 1 -3 -2 -5 -1 4]]
Mapping generators: ~3773/3744, ~3/2
Optimal tuning (CTE): ~3/2 = 702.027c
118th-octave temperaments
118EDO is accurate for harmonics 3 and 5, so various 118th-octave temperaments actually make sense.
Parakleischis
118EDO and its multiples are members of both parakleismic and schismic, and from this it derives its name.
Subgroup: 2.3.5.7
Comma list: 32805/32768, 1224440064/1220703125
Mapping: [⟨118 187 274 0], ⟨0 0 0 1]]
POTE generator: ~8/7 = 231.2765
Badness: 0.145166
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 32805/32768, 137781/137500
Mapping: [⟨118 187 274 0 77], ⟨0 0 0 1 1]]
POTE generator: ~8/7 = 231.4883
Vals: Template:Val list
Badness: 0.049316
Oganesson
Named after the 118th element, since a simpler temperament was already named. 82 periods plus a generator correspond to 13/8.
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 34398/34375, 32805/32768, 384912/384475
Mapping: 118 187 274 332 410 473 0 0 0 -2 -5 1
Mapping generators: ~3185/3168, ~8125/6144
Optimal tuning (CTE): ~8125/6144 = 484.487
Vals: 354, 590ee, 708e, 944e, 1298, 1652, 2006