Table of 159edo Intervals

From Xenharmonic Wiki
Revision as of 02:28, 17 September 2020 by Aura (talk | contribs) (Okay, finally got the Antitonic region done... now it's time for the rest of the second half of the chart...)
Jump to navigation Jump to search

This table assumes 17-limit patent val <159 252 369 446 550 588 650|. Intervals highlighted in bold are prime harmonics or subharmonics, while other well-known intervals will likely have links to their respective pages. In addition, intervals that differ from the nearest step by more than 3.5 cents will be in italics, while intervals that differ from assigned steps by a rate of 50% or more, multiples of such intervals, or else, intervals that have an odd limit higher than 1024, will not be included in the chart at all. Furthermore, when multiple well-known intervals for a given prime-limit share a step size, they may share a cell in the chart; conversely, while a "?" in the chart means that no known interval meets the criteria for inclusion, and multiple adjacent cells of this type within the same row are likely to be conjoined.

Step Cents 5 limit 7 limit 11 limit 13 limit 17 limit
0 0 1/1
1 7.5471698 ? 225/224 243/242 351/350 256/255
2 15.0943396 ? 121/120, 100/99 144/143 120/119
3 22.6415094 81/80 78/77 85/84
4 30.1886792 ? 64/63 56/55, 55/54 52/51
5 37.7358491 ? 45/44 51/50
6 45.2830189 ? 40/39 192/187
7 52.8301887 ? 33/32 34/33
8 60.3773585 ? 28/27 729/704
9 67.9245283 25/24 26/25, 27/26
10 75.4716981 ? 160/153
11 83.0188679 ? 21/20 22/21
12 90.5660377 256/243, 135/128
13 98.1132075 ? 128/121 18/17
14 105.6603774 ? 17/16
15 113.2075472 16/15
16 120.7547170 ? 15/14
17 128.3018868 ? 14/13 128/119
18 135.8490566 27/25 13/12
19 143.3962264 ? 88/81
20 150.9433962 ? 12/11
21 158.4905660 ? 128/117 561/512, 1024/935
22 166.0377358 ? 11/10
23 173.5849057 ? 567/512 243/220 425/384
24 181.1320755 10/9 256/231
25 188.6792458 ? 143/128 512/459
26 196.2264151 ? 28/25
27 203.7735849 9/8
28 211.3207547 ? 289/256
29 218.8679245 ? 17/15
30 226.4150943 256/225
31 233.9622642 ? 8/7 55/48
32 241.5094340 ? 1024/891
33 249.0566038 ? 15/13
34 256.6037736 ? 297/256
35 264.1509434 ? 7/6 64/55
36 271.6981132 75/64
37 279.2452830 ? 20/17
38 286.7924528 ? 33/28 13/11 85/72
39 294.3396226 32/27
40 301.8867925 ? 25/21
41 309.4339622 ? 512/429 153/128
42 316.9811321 6/5 77/64
43 324.5283019 ? 512/425
44 332.0754717 ? 144/119, 165/136
45 339.6226415 ? 39/32
46 347.1698113 ? 11/9
47 354.7169811 ? 27/22
48 362.2641509 ? 16/13
49 369.8113208 ? 68/55
50 377.3584906 ? 1024/825
51 384.9056604 5/4 96/77
52 392.4528302 ? 64/51
53 400 ? 63/50
54 407.5471698 81/64
55 415.0943396 ? 14/11 33/26 108/85
56 422.6415094 ? 51/40
57 430.1886792 32/25
58 437.7358491 ? 9/7 165/128
59 445.2830189 ? 128/99
60 452.8301887 ? 13/10
61 460.3773585 ? 176/135
62 467.9245283 ? 21/16
63 475.4716981 320/243, 675/512
64 483.0188679 ? 33/25 45/34
65 490.5660377 ? 85/64
66 498.1132075 4/3
67 505.6603774 ? 75/56
68 513.2075472 ? 121/90
69 520.7547170 27/20
70 528.3018868 ? 110/81
71 535.8490566 ? 15/11
72 543.3962264 ? 256/187
73 550.9433962 ? 11/8
74 558.4905660 ? 112/81
75 566.0377358 25/18
76 573.5849057 ? 357/256
77 581.1320755 ? 7/5
78 588.6792458 1024/729, 45/32
79 596.2264151 ? 24/17
80 603.7735849 ? 17/12
81 611.3207547 729/512, 64/45
82 618.8679245 ? 10/7