Fractional-octave temperaments
Fractional-octave temperaments, when viewed from a regular temperament theory perspective, are temperaments which have a period which corresponds to a just interval mapped to a fraction of the octave, that is one step of an EDO.
Theory
Fractional-octave temperaments are valuable with regards to polysystemicism and polychromatics. They are acoustically significant with regards to containing modes of limited transposition, as well as their ability to expand on the harmony of the equal division they are a superset of. Such temperaments are also a way of introducing less common and harmonically less performing equal divisions into music that prefers consonance and is based on regular temperament theory.
Terminology
The terminology was developed by Eliora. The equal division containing the mos scale of such a temperament, starting from the tonic, is referred to as a wireframe, and individual notes of that equal division are called hinges. Thus in this context, the wireframe is the tuning consisting of only stacks of the period and no stacks of the generator. Temperament-agnostically, this can be used to refer to any structure embedded in an (x,y)-ET which repeats y times within that period, its "wireframe" is y-ET.
The most common way to produce a fractional-octave temperament is through an excellent approximation of an interval relative to the size of the wireframe edo. For example, compton family tempers out the Pythagorean comma and maps 7 steps of 12edo to 3/2. Likewise, a lot of 10th-octave temperaments have a 13/8 as 7\10, and 26th-octave temperaments often have a 7/4 for 21\26.
Temperament collections
Temperaments discussed as a part of a commatic family, or otherwise in temperament lists unrelated to fractional-octave theory include:
- 1\2 period temperaments
- 1\3 period temperaments
- 1\4 period temperaments
- 1\5 period temperaments
- 1\6 period temperaments
- Akjaysmic temperaments (1\7 period)
- Octoid, octant (1\8 period)
- Tritrizo temperaments (1\9 period)
- Linus temperaments (1\10 period)
- Hendecatonic, undeka (1\11 period)
- Compton, atomic (1\12 period)
- Triskaidekic, tridecatonic, trideci, aluminium (1\13 period)
- Silicon (1\14 period)
- Pentadecal, quindecic (1\15 period)
- Hexadecoid, sedecic (1\16 period)
- Chlorine (1\17 period)
- Hemiennealimmal (1\18 period)
- Enneadecal, meanmag (1\19 period)
- Degrees (1\20 period)
- Akjayland (1\21 period)
- Icosidillic (1\22 period)
- Icositritonic (1\23 period)
- Hours, chromium (1\24 period)
- Bosonic (1\26 period)
- Trinealimmal, cobalt (1\27 period)
- Oquatonic (1\28 period)
- Mystery, copper (1\29 period)
- Birds (1\31 period)
- Windrose, bezique (1\32 period)
- Bromine, tritonopod (1\35 period)
- Decades (1\36 period)
- Rubidium, dzelic (1\37 period)
- Hemienneadecal, semihemienneadecal (1\38 period)
- Counterpyth temperaments, niobium (1\41 period)
- Meridic (1\43 period)
- Palladium (1\46 period)
- Mercator temperaments (1\53 period)
- Minutes, magnetic temperaments (1\60 period)
- Omicronbeta, hafnium (1\72 period)
- Iridium (1\77 period)
- Octogintic, mercury, tetraicosic (1\80 period)
- Garistearn (1\94 period)
- Undecentic (1\99 period)
- Parakleischis, oganesson (1\118 period)
- Schisennealimmal (1\171 period)
- Lunennealimmal (1\441 period)
44th-octave temperaments
One step of 44edo is very close to the septimal comma, 64/63. The relationship is preserved even up thousands of edos.
Ruthenium
Ruthenium is named after the 44th element, and can be expressed as the 1848 & 2684 temperament.
Subgroup: 2.3.5.7
Comma list: [-8 23 -5 -6⟩, [51 -13 -1 -10⟩
Mapping: [⟨44 0 -386 263], ⟨0 1 7 -2]]
Mapping generators: ~64/63, ~3
Optimal tuning (CTE): ~3/2 = 701.9420
Optimal ET sequence: 176, 660, 836, 1848, 2684, 4532, 19976, 24508, 29040, 33572
Badness: 0.111
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 1771561/1771470, 67110351/67108864
Mapping: [⟨44 0 -386 263 -57], ⟨0 1 7 -2 3]]
Optimal tuning (CTE): ~3/2 = 701.9429
Optiml GPV sequence: 176, 660, 836, 1848, 2684, 4532, 15444, 19976e
Badness: 0.0209
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 9801/9800, 196625/196608, 823680/823543, 1771561/1771470
Mapping: [⟨44 0 -386 263 -57 1976], ⟨0 1 7 -2 3 -26]]
Optimal tuning (CTE): ~3/2 = 701.939
Optiml GPV sequence: 836, 1848, 2684, 7216, 9900, 12584
Badness: 0.0396
56th-octave temperaments
Barium
One step of 56edo is close to a syntonic comma. Named after the 56th element, barium tempers out the [-225 224 -56⟩ comma, which sets 56 syntonic commas equal to the octave. It can be expressed as the 224 & 2072 temperament.
Subgroup: 2.3.5
Comma list: [-225 224 -56⟩
Mapping: [⟨56 0 -225], ⟨0 1 4]]
Mapping generators: ~81/80, ~3
Optimal tuning (CTE): ~3/2 = 701.9379
Optimal ET sequence: 224, 1176, 1400, 1624, 1848, 2072, 5992, 8064, 26264, 34328b, 42392b
Badness: 4.70
7-limit
Subgroup: 2.3.5.7
Comma list: [-12 29 -11 -3⟩, [47 -7 -7 -7⟩
Mapping: [⟨56 0 -225 601], ⟨0 1 4 -5]]
Optimal tuning (CTE): ~3/2 = 701.9433
Optimal ET sequence: 224, 1176, 1400, 1624, 1848, 2072, 5768, 7616, 17080, 24696cd
Badness: 0.227
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 1019215872/1019046875, 14765025303/14763950080
Mapping: [⟨56 0 -225 601 460], ⟨0 1 4 -5 -3]]
Optimal tuning (CTE): ~3/2 = 701.9431
Optimal ET sequence: 224, 1176, 1400, 1624, 1848, 3920, 5768, 7616, 21000cd, 28616cd
Badness: 0.0345
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 4225/4224, 9801/9800, 67392/67375, 26802913280/26795786661
Mapping: [⟨56 0 -225 601 460 651], ⟨0 1 4 -5 -3 -5]]
Optimal tuning (CTE): ~3/2 = 701.9431
Optimal ET sequence: 224, 1848, 2072, ...
61st-octave temperaments
Promethium
Promethium tempers out the dipromethia and can be described as the 183 & 2684 temperament. By tempering out 4100625/4100096 promethium identifies the diaschisma with 2025/2002 in the 13-limit and also in the 17-limit.
Subgroup: 2.3.5.7.11.13
Comma list: 10648/10647, 196625/196608, 4100625/4100096, 204800000/204788493
Mapping: [⟨61 0 335 703 66 -161], ⟨0 2 -4 -11 3 8]]
Mapping generators: ~2025/2002 = 1\61, ~6875/3969 = 950.970
Optimal tuning (CTE): ~6875/3969 = 950.970
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 14400/14399, 37180/37179, 121875/121856, 140800/140777, 3536379/3536000
Mapping: [⟨61 0 335 703 66 -161 201], ⟨0 2 -4 -11 3 8 1]]
Mapping generators: ~2025/2002 = 1\61, ~11907/6875 = 950.970
Optimal tuning (CTE): ~11907/6875 = 950.970
Optimal ET sequence: 183, 2684, ...
65th-octave temperaments
65edo is accurate for harmonics 3, 5, and 11, so various 65th-octave temperaments actually make sense.
Terbium
The name of terbium temperament comes from Terbium, the 65th element.
Subgroup: 2.3.5.7
Comma list: 32805/32768, 78732/78125
Mapping: [⟨65 103 151 0], ⟨0 0 0 1]]
Mapping generators: ~81/80, ~7
Optimal tuning (POTE): ~7/4 = 969.1359
Badness: 0.169778
11-limit
Subgroup: 2.3.5.7.11
Comma list: 243/242, 4000/3993, 5632/5625
Mapping: [⟨65 103 151 0 225], ⟨0 0 0 1 0]]
Optimal tuning (POTE): ~7/4 = 969.5715
Badness: 0.059966
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 351/350, 2080/2079, 3584/3575
Mapping: [⟨65 103 151 0 225 58], ⟨0 0 0 1 0 1]]
Optimal tuning (POTE): ~7/4 = 969.9612
Badness: 0.036267
91st-octave temperaments
Protactinium
Protactinium is described as the 364 & 1547 temperament and named after the 91st element.
Subgroup: 2.3.5.7
Comma list: [47 -7 -7 -7⟩, [-2 -25 1 14⟩
Mapping: [⟨91 0 644 -33 1036], ⟨0 1 -3 -2 -5]]
- mapping generators: ~1728/1715, ~3
Optimal tuning (CTE): ~3/2 = 701.991
Supporting ETs: 364, 819, 1183, 1547, 1911, 2730, 3094, 3913, 4277
11-limit
Subgroup: 2.3.5.7.11
Comma list: 234375/234256, 26214400/26198073, 514714375/514434888
Mapping: [⟨91 0 644 -33 1036], ⟨0 1 -3 -2 -5]]
- mapping generators: ~1728/1715, ~3
Optimal tuning (CTE): ~3/2 = 702.015
Supporting ETs: 364, 819e, 1183, 1547, 1911, 2275, 2730e, 3458
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 4096/4095, 91125/91091, 369754/369603, 2912000/2910897
Mapping: [⟨91 0 644 -33 1036 481], ⟨0 1 -3 -2 -5 -1]]
- mapping generators: ~1728/1715, ~3
Optimal tuning (CTE): ~3/2 = 702.0195
Optimal ET sequence: 364, 819e, 1183, 1547
Badness: 0.0777
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 4096/4095, 14400/14399, 42500/42471, 75735/75712, 2100875/2100384
Mapping: [⟨91 0 644 -33 1036 481 -205], ⟨0 1 -3 -2 -5 -1 4]]
Optimal tuning (CTE): ~3/2 = 702.0269
Optimal ET sequence: 364, 1183, 1547, 1911
Badness: 0.0582
111th-octave temperaments
Roentgenium
Roentgenium is defined as 4884 & 8103 in the 19-limit and is named after the 111th element. 111 is 37 x 3, and what's particularly remarkable about this temperament is that it still preserves the relationship of 11/8 to 37edo in EDOs the size of thousands. Developed for a musical composition in 8103edo by Eliora.
Subgroup: 2.3.5.7.11
Comma list: [-25 -12 -3 12 5⟩, [-27 27 0 3 -7⟩, [26 -8 -2 8 -9⟩
Mapping: [⟨111 111 2855 896 384], ⟨0 1 -40 -9 0]]
Optimal tuning (CTE): ~3/2 = 701.964
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 31213/31212, 486400/486387, 633556/633555, 653429/653400, 1037232/1037153, 9714446/9713275, 24764600/24762387
Mapping: [⟨111 111 2855 896 384 410 452 472], ⟨0 1 -40 -9 0 -11 -25 7]]
Optimal tuning (CTE): ~3/2 = 701.9...
Optimal ET sequence: 3219c, 4884, 8103, 12987, ...