Fractional-octave temperaments
All temperaments on this page have a fractional-octave period, such as 1\26, 1\31, or 1\41.
Temperaments discussed elsewhere include:
- 1\2 period temperaments
- 1\3 period temperaments
- 1\4 period temperaments
- 1\5 period temperaments
- 1\6 period temperaments
- Akjaysmic temperaments (1\7 period)
- Octoid, octant (1\8 period)
- Tritrizo temperaments (1\9 period)
- Linus temperaments (1\10 period)
- Hendecatonic, undeka (1\11 period)
- Compton, atomic (1\12 period)
- Triskaidekic, tridecatonic, trideci (1\13 period)
- Pentadecal, quindecic (1\15 period)
- Hexadecoid, sedecic (1\16 period)
- Chlorine (1\17 period)
- Hemiennealimmal (1\18 period)
- Enneadecal, meanmag (1\19 period)
- Degrees (1\20 period)
- Akjayland (1\21 period)
- Icosidillic (1\22 period)
- Icositritonic (1\23 period)
- Hours (1\24 period)
- Chromium (1\24 period)
- Bosonic (1\26 period)
- Trinealimmal, cobalt (1\27 period)
- Oquatonic (1\28 period)
- Mystery (1\29 period)
- Birds (1\31 period)
- Windrose (1\32 period)
- Decades (1\36 period)
- Hemienneadecal (1\38 period)
- Counterpyth temperaments (1\41 period)
- Meridic (1\43 period)
- Palladium (1\46 period)
- Mercator temperaments (1\53 period)
- Minutes, magnetic temperaments (1\60 period)
- Omicronbeta (1\72 period)
- Octogintic (1\80 period)
- Garistearn (1\94 period)
- Undecentic (1\99 period)
- Schisennealimmal (1\171 period)
- Lunennealimmal (1\441 period)
14th-octave temperaments
While 14edo is poor in simple harmonics, some of its multiples (such as 224edo and 742edo) are members of zeta edo list.
Silicon
The name of silicon temperament comes from the 14th element. Defined upwards to the 13-limit. When tuned in 742edo, it is generated by a 53edo fifth intermingled with 14edo periods.
Subgroup: 2.3.5.7
Comma list: 14348907/14336000, 56358560858112/56296884765625
Mapping: [⟨14 0 -145 239], ⟨0 1 8 -9]]
Mapping generators: ~6125/5832, ~3
Optimal tuning (CTE): ~3/2 = 701.870
Badness: 0.196
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 1240029/1239040, 2359296/2358125
Mapping: [⟨14 0 -145 239 115], ⟨0 1 8 -9 -3]]
Optimal tuning (CTE): ~3/2 = 701.872
Optimal GPV sequence: Template:Val list
Badness: 0.0450
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 4096/4095, 6656/6655, 9801/9800, 24192/24167
Mapping: [⟨14 0 -145 239 115 74], ⟨0 1 8 -9 -3 -1]]
Optimal tuning (CTE): ~3/2 = 701.8733
Optimal GPV sequence: Template:Val list
Badness: 0.0269
37th-octave temperaments
37edo is accurate for harmonics 5, 7, 11, and 13, so various 37th-octave temperaments actually make sense.
Rubidium
The name of rubidium temperament comes from Rubidium, the 37th element.
Subgroup: 2.3.5.7
Comma list: 3136/3125, 4194304/4117715
Mapping: [⟨37 0 86 104], ⟨0 1 0 0]]
Mapping generators: ~50/49, ~3
Optimal tuning (POTE): ~3/2 = 703.3903
Badness: 0.312105
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 1375/1372, 65536/65219
Mapping: [⟨37 0 86 104 128], ⟨0 1 0 0 0]]
Optimal tuning (POTE): ~3/2 = 703.0355
Optimal GPV sequence: Template:Val list
Badness: 0.101001
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 176/175, 640/637, 847/845, 1375/1372
Mapping: [⟨37 0 86 104 128 137], ⟨0 1 0 0 0 0]]
Optimal tuning (POTE): ~3/2 = 703.0520
Optimal GPV sequence: Template:Val list
Badness: 0.048732
Triacontaheptoid
Subgroup: 2.3.5.7
Comma list: 244140625/242121642, 283115520/282475249
Mapping: [⟨37 2 67 85], ⟨0 3 1 1]]
Mapping generator: ~50/49, ~24000/16807
Optimal tuning (CTE): ~24000/16807 = 612.4003
Badness: 0.784746
11-limit
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 4000/3993, 226492416/226474325
Mapping: [⟨37 2 67 85 128], ⟨0 3 1 1 0]]
Optimal tuning (CTE): ~768/359 = 612.4003
Optimal GPV sequence: Template:Val list
Badness: 0.167327
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 1375/1372, 4000/3993, 15379/15360
Mapping: [⟨37 2 67 85 128 118], ⟨0 3 1 1 0 1]]
Optimal tuning (CTE): ~462/325 = 612.4206
Optimal GPV sequence: Template:Val list
Badness: 0.076183
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 625/624, 715/714, 1225/1224, 4000/3993, 11271/11264
Mapping: [⟨37 2 67 85 128 118 189], ⟨0 3 1 1 0 1 -2]]
Optimal tuning (CTE): ~121/85 = 612.4187
Optimal GPV sequence: Template:Val list
Badness: 0.052475
44th-octave temperaments
One step of 44edo is very close to the septimal comma, 64/63. The relationship is preserved even up thousands of edos.
Ruthenium
Ruthenium is named after the 44th element, and can be expressed as the 1848 & 2684 temperament.
Subgroup: 2.3.5.7
Comma list: [-8 23 -5 -6⟩, [51 -13 -1 -10⟩
Mapping: [⟨44 0 -386 263], ⟨0 1 7 -2]]
Mapping generators: ~64/63, ~3
Optimal tuning (CTE): ~3/2 = 701.9420
Badness: 0.111
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 1771561/1771470, 67110351/67108864
Mapping: [⟨44 0 -386 263 -57], ⟨0 1 7 -2 3]]
Optimal tuning (CTE): ~3/2 = 701.9429
Optiml GPV sequence: Template:Val list
Badness: 0.0209
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 9801/9800, 196625/196608, 823680/823543, 1771561/1771470
Mapping: [⟨44 0 -386 263 -57 1976], ⟨0 1 7 -2 3 -26]]
Optimal tuning (CTE): ~3/2 = 701.939
Optiml GPV sequence: Template:Val list
Badness: 0.0396
56th-octave temperaments
Barium
One step of 56edo is close to a syntonic comma. Named after the 56th element, barium tempers out the [-225 224 -56⟩ comma, which sets 56 syntonic commas equal to the octave. It can be expressed as the 224 & 2072 temperament.
Subgroup: 2.3.5
Comma list: [-225 224 -56⟩
Mapping: [⟨56 0 -225], ⟨0 1 4]]
Mapping generators: ~81/80, ~3
Optimal tuning (CTE): ~3/2 = 701.9379
Badness: 4.70
7-limit
Subgroup: 2.3.5.7
Comma list: [-12 29 -11 -3⟩, [47 -7 -7 -7⟩
Mapping: [⟨56 0 -225 601], ⟨0 1 4 -5]]
Optimal tuning (CTE): ~3/2 = 701.9433
Badness: 0.227
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 1019215872/1019046875, 14765025303/14763950080
Mapping: [⟨56 0 -225 601 460], ⟨0 1 4 5 -3]]
Optimal tuning (CTE): ~3/2 = 701.9431
Optimal GPV sequence: Template:Val list
Badness: 0.0345
65th-octave temperaments
65edo is accurate for harmonics 3, 5, and 11, so various 65th-octave temperaments actually make sense.
Terbium
The name of terbium temperament comes from Terbium, the 65th element.
Subgroup: 2.3.5.7
Comma list: 32805/32768, 78732/78125
Mapping: [⟨65 103 151 0], ⟨0 0 0 1]]
Mapping generators: ~81/80, ~7
Optimal tuning (POTE): ~7/4 = 969.1359
Badness: 0.169778
11-limit
Subgroup: 2.3.5.7.11
Comma list: 243/242, 4000/3993, 5632/5625
Mapping: [⟨65 103 151 0 225], ⟨0 0 0 1 0]]
Optimal tuning (POTE): ~7/4 = 969.5715
Optimal GPV sequence: Template:Val list
Badness: 0.059966
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 351/350, 2080/2079, 3584/3575
Mapping: [⟨65 103 151 0 225 58], ⟨0 0 0 1 0 1]]
Optimal tuning (POTE): ~7/4 = 969.9612
Optimal GPV sequence: Template:Val list
Badness: 0.036267
91st-octave temperaments
Protactinium
Protactinium is described as the 364 & 1547 temperament and named after the 91st element.
Subgroup: 2.3.5.7.11.13
Comma list: 4096/4095, 91125/91091, 369754/369603, 2912000/2910897
Mapping: [⟨91 0 644 -33 1036 481], ⟨0 1 -3 -2 -5 -1]]
Mapping generators: ~1728/1715, ~3
Optimal tuning (CTE): ~3/2 = 702.0195
Optimal GPV sequence: Template:Val list
Badness: 0.0777
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 4096/4095, 14400/14399, 42500/42471, 75735/75712, 2100875/2100384
Mapping: [⟨91 0 644 -33 1036 481 -205], ⟨0 1 -3 -2 -5 -1 4]]
Optimal tuning (CTE): ~3/2 = 702.0269
Optimal GPV sequence: Template:Val list
Badness: 0.0582
111th-octave temperaments
Roentgenium
Roentgenium is defined as 4884 & 8103 in the 19-limit and is named after the 111th element. 111 is 37 x 3, and what's particularly remarkable about this temperament is that it still preserves the relationship of 11/8 to 37edo in EDOs the size of thousands. Developed for a musical composition in 8103edo by Eliora.
Subgroup: 2.3.5.7.11
Comma list: [-25 -12 -3 12 5⟩, [-27 27 0 3 -7⟩, [26 -8 -2 8 -9⟩
Mapping: [⟨111 111 2855 896 384], ⟨0 1 -40 -9 0]]
Optimal tuning (CTE): ~3/2 = 701.964
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 31213/31212, 486400/486387, 633556/633555, 653429/653400, 1037232/1037153, 9714446/9713275, 24764600/24762387
Mapping: [⟨111 111 2855 896 384 410 452 472], ⟨0 1 -40 -9 0 -11 -25 7]]
Optimal tuning (CTE): ~3/2 = 701.9...
Vals: 3219c, 4884, 8103, 12987, ...
118th-octave temperaments
118edo is accurate for harmonics 3 and 5, so various 118th-octave temperaments actually make sense.
Parakleischis
118edo and its multiples are members of both parakleismic and schismic, and from this it derives its name.
Subgroup: 2.3.5.7
Comma list: 32805/32768, 1224440064/1220703125
Mapping: [⟨118 187 274 0], ⟨0 0 0 1]]
Mapping generators: ~15625/15552, ~7
Optimal tuning (POTE): ~7/4 = 968.7235
Badness: 0.145166
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 32805/32768, 137781/137500
Mapping: [⟨118 187 274 0 77], ⟨0 0 0 1 1]]
Optimal tuning (POTE): ~7/4 = 968.5117
Optimal GPV sequence: Template:Val list
Badness: 0.049316
Centenniamajor
Named after the fact that 18 is the age of majority in most countries, and 100 (centennial) + 18 (major) = 118.
Subgroup: 2.3.5.7.11
Comma list: 32805/32768, 151263/151250, 1224440064/1220703125
Mapping: [⟨118 187 274 0 -420], ⟨0 0 0 2 5]]
Mapping generators: ~15625/15552, ~405504/153125
Optimal tuning (CTE): ~202752/153125 = 484.4837
Optimal GPV sequence: Template:Val list
Badness: 0.357
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1716/1715, 32805/32768, 34398/34375, 384912/384475
Mapping: [⟨118 187 274 0 -420 271], ⟨0 0 0 2 5 1]]
Optimal tuning (CTE): ~8125/6144 = 484.4867
Optimal GPV sequence: Template:Val list
Badness: 0.122
Oganesson
Named after the 118th element. In the 13-limit, the period corresponds to 169/168, and in the 17-limit, it corresponds also to 170/169, meaning that 28561/28560 is tempered out. As opposed to being an extension of parakleischis, this has the generator that splits the third harmonic into three equal parts.
In the 7-limit and 11-limit, the period corresponds to bronzisma.
Subgroup: 2.3.5.7
Comma list: [30 10 -27 6⟩, [77 -20 -5 -12⟩
Mapping: [⟨118 0 274 643], ⟨0 3 0 -5]]
Mapping generators: ~2097152/2083725, ~1953125/1354752
Optimal tuning (CTE): ~1953125/1354752 = 634.0068
Badness: 2.66
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, [13 -1 4 -16 7⟩, [55 -7 -15 -2 -1⟩
Mapping: [⟨118 0 274 643 1094], ⟨0 3 0 -5 -11]]
Optimal tuning (CTE): ~1953125/1354752 = 634.0085
Optimal GPV sequence: Template:Val list
Badness: 0.568
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 4096/4095, 9801/9800, 537403776/537109375, 453874312332/453857421875
Mapping: [⟨118 0 274 643 1094 499], ⟨0 3 0 -5 -11 -1]]
Mapping generators: ~169/168, ~1124864/779625
Optimal tuning (CTE): ~1124864/779625 = 634.0087
Optimal GPV sequence: Template:Val list
Badness: 0.172
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 4096/4095, 9801/9800, 34391/34375, 361250/361179, 562432/562275
Mapping: [⟨118 0 274 643 1094 499 607], ⟨0 3 0 -5 -11 -1 2]]
Mapping generators: ~170/169, ~238/165
Optimal tuning (CTE): ~238/165 = 634.0080
Optimal GPV sequence: Template:Val list
Badness: 0.105