34zpi
34 zeta peak index (abbreviated 34zpi), is the equal-step tuning system obtained from the 34th peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
34zpi | 12.0231830072926 | 99.8071807833375 | 5.193290 | 1.269599 | 15.899282 | 12edo | 1197.68616940005 | 10 | 6 |
Intervals
JI ratios are comprised of 32-integer limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 2 steps Limma = 1 step Apotome = 1 step | ||
Degree | Cents | Ratios | Ups and Downs Notation |
---|---|---|---|
0 | 0.000 | P1 | |
1 | 99.807 | 32/31, 31/30, 30/29, 29/28, 28/27, 27/26, 26/25, 25/24, 24/23, 23/22, 22/21, 21/20, 20/19, 19/18, 18/17, 17/16, 16/15, 31/29, 15/14, 29/27, 14/13, 27/25, 13/12, 25/23 | m2 |
2 | 199.614 | 12/11, 23/21, 11/10, 32/29, 21/19, 31/28, 10/9, 29/26, 19/17, 28/25, 9/8, 26/23, 17/15, 25/22, 8/7, 31/27, 23/20, 15/13 | M2 |
3 | 299.422 | 22/19, 29/25, 7/6, 27/23, 20/17, 13/11, 32/27, 19/16, 25/21, 31/26, 6/5, 29/24, 23/19, 17/14, 28/23, 11/9 | m3 |
4 | 399.229 | 27/22, 16/13, 21/17, 26/21, 31/25, 5/4, 29/23, 24/19, 19/15, 14/11, 23/18, 32/25, 9/7, 31/24, 22/17 | M3 |
5 | 499.036 | 13/10, 30/23, 17/13, 21/16, 25/19, 29/22, 4/3, 31/23, 27/20, 23/17, 19/14, 15/11, 26/19 | P4 |
6 | 598.843 | 11/8, 29/21, 18/13, 25/18, 32/23, 7/5, 31/22, 24/17, 17/12, 27/19, 10/7, 23/16, 13/9, 29/20, 16/11 | A4, d5 |
7 | 698.650 | 19/13, 22/15, 25/17, 28/19, 31/21, 3/2, 32/21, 29/19, 26/17, 23/15, 20/13 | P5 |
8 | 798.457 | 17/11, 31/20, 14/9, 25/16, 11/7, 30/19, 19/12, 27/17, 8/5, 29/18, 21/13, 13/8, 31/19 | m6 |
9 | 898.265 | 18/11, 23/14, 28/17, 5/3, 32/19, 27/16, 22/13, 17/10, 29/17, 12/7, 31/18, 19/11 | M6 |
10 | 998.072 | 26/15, 7/4, 30/17, 23/13, 16/9, 25/14, 9/5, 29/16, 20/11, 31/17 | m7 |
11 | 1097.879 | 11/6, 24/13, 13/7, 28/15, 15/8, 32/17, 17/9, 19/10, 21/11, 23/12, 25/13, 27/14, 29/15, 31/16 | M7 |
12 | 1197.686 | 2/1 | P1 +1 oct |
13 | 1297.493 | 31/15, 29/14, 27/13, 25/12, 23/11, 21/10, 19/9, 17/8, 32/15, 15/7, 28/13, 13/6 | m2 +1 oct |
14 | 1397.301 | 24/11, 11/5, 31/14, 20/9, 29/13, 9/4, 25/11, 16/7, 23/10 | M2 +1 oct |
15 | 1497.108 | 30/13, 7/3, 26/11, 19/8, 31/13, 12/5, 29/12, 17/7 | m3 +1 oct |
16 | 1596.915 | 22/9, 27/11, 32/13, 5/2, 28/11, 23/9, 18/7, 31/12 | M3 +1 oct |
17 | 1696.722 | 13/5, 21/8, 29/11, 8/3, 27/10, 19/7, 30/11 | P4 +1 oct |
18 | 1796.529 | 11/4, 25/9, 14/5, 31/11, 17/6, 20/7, 23/8, 26/9, 29/10 | A4 +1 oct, d5 +1 oct |
19 | 1896.336 | 32/11, 3/1 | P5 +1 oct |
20 | 1996.144 | 31/10, 28/9, 25/8, 22/7, 19/6, 16/5, 29/9, 13/4 | m6 +1 oct |
21 | 2095.951 | 23/7, 10/3, 27/8, 17/5, 24/7, 31/9 | M6 +1 oct |
22 | 2195.758 | 7/2, 32/9, 25/7, 18/5, 29/8 | m7 +1 oct |
23 | 2295.565 | 11/3, 26/7, 15/4, 19/5, 23/6, 27/7, 31/8 | M7 +1 oct |
24 | 2395.372 | 4/1 | P1 +2 oct |
25 | 2495.180 | 29/7, 25/6, 21/5, 17/4, 30/7, 13/3 | m2 +2 oct |
26 | 2594.987 | 22/5, 31/7, 9/2, 32/7, 23/5 | M2 +2 oct |
27 | 2694.794 | 14/3, 19/4, 24/5, 29/6 | m3 +2 oct |
28 | 2794.601 | 5/1, 31/6 | M3 +2 oct |
29 | 2894.408 | 26/5, 21/4, 16/3, 27/5 | P4 +2 oct |
30 | 2994.215 | 11/2, 28/5, 17/3, 23/4, 29/5 | A4 +2 oct, d5 +2 oct |
31 | 3094.023 | 6/1 | P5 +2 oct |
32 | 3193.830 | 31/5, 25/4, 19/3, 32/5, 13/2 | m6 +2 oct |
33 | 3293.637 | 20/3, 27/4 | M6 +2 oct |
34 | 3393.444 | 7/1, 29/4 | m7 +2 oct |
35 | 3493.251 | 22/3, 15/2, 23/3 | M7 +2 oct |
36 | 3593.059 | 31/4, 8/1 | P1 +3 oct |
37 | 3692.866 | 25/3, 17/2, 26/3 | m2 +3 oct |
38 | 3792.673 | 9/1 | M2 +3 oct |
39 | 3892.480 | 28/3, 19/2, 29/3 | m3 +3 oct |
40 | 3992.287 | 10/1 | M3 +3 oct |
41 | 4092.094 | 31/3, 21/2, 32/3 | P4 +3 oct |
42 | 4191.902 | 11/1, 23/2 | A4 +3 oct, d5 +3 oct |
43 | 4291.709 | 12/1 | P5 +3 oct |
44 | 4391.516 | 25/2, 13/1 | m6 +3 oct |
45 | 4491.323 | 27/2 | M6 +3 oct |
46 | 4591.130 | 14/1, 29/2 | m7 +3 oct |
47 | 4690.937 | 15/1 | M7 +3 oct |
48 | 4790.745 | 31/2, 16/1 | P1 +4 oct |
49 | 4890.552 | 17/1 | m2 +4 oct |
50 | 4990.359 | 18/1 | M2 +4 oct |
51 | 5090.166 | 19/1 | m3 +4 oct |
52 | 5189.973 | 20/1 | M3 +4 oct |
53 | 5289.781 | 21/1 | P4 +4 oct |
54 | 5389.588 | 22/1, 23/1 | A4 +4 oct, d5 +4 oct |
55 | 5489.395 | 24/1 | P5 +4 oct |
56 | 5589.202 | 25/1 | m6 +4 oct |
57 | 5689.009 | 26/1, 27/1 | M6 +4 oct |
58 | 5788.816 | 28/1, 29/1 | m7 +4 oct |
59 | 5888.624 | 30/1 | M7 +4 oct |
60 | 5988.431 | 31/1, 32/1 | P1 +5 oct |
Approximation to JI
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
4/3 | -0.991 | -0.993 |
8/3 | +1.323 | +1.325 |
16/9 | -1.982 | -1.986 |
2/1 | +2.314 | +2.318 |
15/1 | -2.669 | -2.674 |
3/2 | +3.305 | +3.311 |
16/3 | +3.637 | +3.644 |
9/8 | +4.296 | +4.304 |
4/1 | +4.628 | +4.637 |
15/2 | -4.983 | -4.992 |
3/1 | +5.619 | +5.629 |
10/1 | -5.974 | -5.985 |
9/4 | +6.609 | +6.622 |
8/1 | +6.941 | +6.955 |
15/4 | -7.296 | -7.311 |
6/1 | +7.932 | +7.948 |
5/1 | -8.287 | -8.303 |
9/2 | +8.923 | +8.941 |
16/1 | +9.255 | +9.273 |
15/8 | -9.610 | -9.629 |
13/11 | -10.212 | -10.232 |
12/1 | +10.246 | +10.266 |
5/2 | -10.601 | -10.622 |
9/1 | +11.237 | +11.259 |
10/3 | -11.592 | -11.614 |
16/15 | +11.924 | +11.947 |
5/4 | -12.915 | -12.940 |
5/3 | -13.906 | -13.933 |
14/5 | -14.017 | -14.044 |
8/5 | +15.229 | +15.258 |
11/7 | -15.965 | -15.996 |
6/5 | +16.220 | +16.251 |
7/5 | -16.331 | -16.362 |
10/9 | -17.211 | -17.244 |
16/5 | +17.543 | +17.577 |
14/11 | +18.279 | +18.315 |
12/5 | +18.534 | +18.569 |
10/7 | +18.645 | +18.681 |
9/5 | +19.524 | +19.562 |
15/14 | +19.636 | +19.674 |
15/7 | +21.949 | +21.992 |
14/1 | -22.304 | -22.347 |
7/1 | -24.618 | -24.666 |
13/7 | -26.177 | -26.228 |
7/2 | -26.932 | -26.984 |
14/3 | -27.923 | -27.977 |
14/13 | +28.491 | +28.546 |
7/4 | -29.246 | -29.302 |
7/3 | -30.237 | -30.295 |
8/7 | +31.560 | +31.621 |
11/5 | -32.296 | -32.359 |
7/6 | -32.551 | -32.614 |
14/9 | -33.542 | -33.606 |
16/7 | +33.874 | +33.939 |
11/10 | -34.610 | -34.677 |
12/7 | +34.864 | +34.932 |
9/7 | +35.855 | +35.925 |
13/9 | +37.775 | +37.848 |
15/11 | +37.915 | +37.988 |
13/12 | +38.765 | +38.840 |
16/13 | -39.756 | -39.833 |
11/1 | -40.584 | -40.662 |
13/6 | +41.079 | +41.159 |
13/8 | +42.070 | +42.151 |
13/5 | -42.508 | -42.590 |
11/2 | -42.897 | -42.980 |
13/3 | +43.393 | +43.477 |
13/4 | +44.384 | +44.470 |
13/10 | -44.822 | -44.909 |
11/4 | -45.211 | -45.299 |
11/3 | -46.202 | -46.291 |
13/2 | +46.698 | +46.788 |
11/8 | -47.525 | -47.617 |
11/9 | +47.986 | +48.079 |
15/13 | +48.127 | +48.220 |
11/6 | -48.516 | -48.610 |
12/11 | -48.977 | -49.072 |
13/1 | +49.012 | +49.106 |
16/11 | +49.839 | +49.935 |
See also
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |