34zpi
Jump to navigation
Jump to search
34 zeta peak index (abbreviated 34zpi), is the equal-step tuning system obtained from the 34th peak of the Riemann zeta function.
Tuning | Strength | Closest EDO | Integer limit | ||||||
---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per octave | Step size (cents) | Height | Integral | Gap | EDO | Octave (cents) | Consistent | Distinct |
34zpi | 12.0231830072926 | 99.8071807833375 | 5.193290 | 1.269599 | 15.899282 | 12edo | 1197.68616940005 | 10 | 6 |
Intervals
JI ratios are comprised of 16-integer-limit ratios, and are stylized as follows to indicate their accuracy:
|
Whole tone = 2 steps Limma = 1 step Apotome = 1 step | ||
Degree | Cents | Ratios | Ups and Downs Notation |
---|---|---|---|
0 | 0.000 | P1 | |
1 | 99.807 | 16/15, 15/14, 14/13, 13/12 | m2 |
2 | 199.614 | 12/11, 11/10, 10/9, 9/8, 8/7, 15/13 | M2 |
3 | 299.422 | 7/6, 13/11, 6/5, 11/9 | m3 |
4 | 399.229 | 16/13, 5/4, 14/11, 9/7 | M3 |
5 | 499.036 | 13/10, 4/3, 15/11 | P4 |
6 | 598.843 | 11/8, 7/5, 10/7, 13/9, 16/11 | A4, d5 |
7 | 698.650 | 3/2 | P5 |
8 | 798.457 | 14/9, 11/7, 8/5, 13/8 | m6 |
9 | 898.265 | 5/3, 12/7 | M6 |
10 | 998.072 | 7/4, 16/9, 9/5 | m7 |
11 | 1097.879 | 11/6, 13/7, 15/8 | M7 |
12 | 1197.686 | 2/1 | P1 +1 oct |
13 | 1297.493 | 15/7, 13/6 | m2 +1 oct |
14 | 1397.301 | 11/5, 9/4, 16/7 | M2 +1 oct |
15 | 1497.108 | 7/3, 12/5 | m3 +1 oct |
16 | 1596.915 | 5/2 | M3 +1 oct |
17 | 1696.722 | 13/5, 8/3 | P4 +1 oct |
18 | 1796.529 | 11/4, 14/5 | A4 +1 oct, d5 +1 oct |
19 | 1896.336 | 3/1 | P5 +1 oct |
20 | 1996.144 | 16/5, 13/4 | m6 +1 oct |
21 | 2095.951 | 10/3 | M6 +1 oct |
22 | 2195.758 | 7/2 | m7 +1 oct |
23 | 2295.565 | 11/3, 15/4 | M7 +1 oct |
24 | 2395.372 | 4/1 | P1 +2 oct |
25 | 2495.180 | 13/3 | m2 +2 oct |
26 | 2594.987 | 9/2 | M2 +2 oct |
27 | 2694.794 | 14/3 | m3 +2 oct |
28 | 2794.601 | 5/1 | M3 +2 oct |
29 | 2894.408 | 16/3 | P4 +2 oct |
30 | 2994.215 | 11/2 | A4 +2 oct, d5 +2 oct |
31 | 3094.023 | 6/1 | P5 +2 oct |
32 | 3193.830 | 13/2 | m6 +2 oct |
33 | 3293.637 | M6 +2 oct | |
34 | 3393.444 | 7/1 | m7 +2 oct |
35 | 3493.251 | 15/2 | M7 +2 oct |
36 | 3593.059 | 8/1 | P1 +3 oct |
37 | 3692.866 | m2 +3 oct | |
38 | 3792.673 | 9/1 | M2 +3 oct |
39 | 3892.480 | m3 +3 oct | |
40 | 3992.287 | 10/1 | M3 +3 oct |
41 | 4092.094 | P4 +3 oct | |
42 | 4191.902 | 11/1 | A4 +3 oct, d5 +3 oct |
43 | 4291.709 | 12/1 | P5 +3 oct |
44 | 4391.516 | 13/1 | m6 +3 oct |
45 | 4491.323 | M6 +3 oct | |
46 | 4591.130 | 14/1 | m7 +3 oct |
47 | 4690.937 | 15/1 | M7 +3 oct |
48 | 4790.745 | 16/1 | P1 +4 oct |
Approximation to JI
Interval mappings
The following tables show how 16-integer-limit intervals are represented in 34zpi. Prime harmonics are in bold; inconsistent intervals are in italics.
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
4/3 | +0.991 | +0.993 |
8/3 | -1.323 | -1.325 |
16/9 | +1.982 | +1.986 |
2/1 | -2.314 | -2.318 |
15/1 | +2.669 | +2.674 |
3/2 | -3.305 | -3.311 |
16/3 | -3.637 | -3.644 |
9/8 | -4.296 | -4.304 |
4/1 | -4.628 | -4.637 |
15/2 | +4.983 | +4.992 |
3/1 | -5.619 | -5.629 |
10/1 | +5.974 | +5.985 |
9/4 | -6.609 | -6.622 |
8/1 | -6.941 | -6.955 |
15/4 | +7.296 | +7.311 |
6/1 | -7.932 | -7.948 |
5/1 | +8.287 | +8.303 |
9/2 | -8.923 | -8.941 |
16/1 | -9.255 | -9.273 |
15/8 | +9.610 | +9.629 |
13/11 | +10.212 | +10.232 |
12/1 | -10.246 | -10.266 |
5/2 | +10.601 | +10.622 |
9/1 | -11.237 | -11.259 |
10/3 | +11.592 | +11.614 |
16/15 | -11.924 | -11.947 |
5/4 | +12.915 | +12.940 |
5/3 | +13.906 | +13.933 |
14/5 | +14.017 | +14.044 |
8/5 | -15.229 | -15.258 |
11/7 | +15.965 | +15.996 |
6/5 | -16.220 | -16.251 |
7/5 | +16.331 | +16.362 |
10/9 | +17.211 | +17.244 |
16/5 | -17.543 | -17.577 |
14/11 | -18.279 | -18.315 |
12/5 | -18.534 | -18.569 |
10/7 | -18.645 | -18.681 |
9/5 | -19.524 | -19.562 |
15/14 | -19.636 | -19.674 |
15/7 | -21.949 | -21.992 |
14/1 | +22.304 | +22.347 |
7/1 | +24.618 | +24.666 |
13/7 | +26.177 | +26.228 |
7/2 | +26.932 | +26.984 |
14/3 | +27.923 | +27.977 |
14/13 | -28.491 | -28.546 |
7/4 | +29.246 | +29.302 |
7/3 | +30.237 | +30.295 |
8/7 | -31.560 | -31.621 |
11/5 | +32.296 | +32.359 |
7/6 | +32.551 | +32.614 |
14/9 | +33.542 | +33.606 |
16/7 | -33.874 | -33.939 |
11/10 | +34.610 | +34.677 |
12/7 | -34.864 | -34.932 |
9/7 | -35.855 | -35.925 |
13/9 | -37.775 | -37.848 |
15/11 | -37.915 | -37.988 |
13/12 | -38.765 | -38.840 |
16/13 | +39.756 | +39.833 |
11/1 | +40.584 | +40.662 |
13/6 | -41.079 | -41.159 |
13/8 | -42.070 | -42.151 |
13/5 | +42.508 | +42.590 |
11/2 | +42.897 | +42.980 |
13/3 | -43.393 | -43.477 |
13/4 | -44.384 | -44.470 |
13/10 | +44.822 | +44.909 |
11/4 | +45.211 | +45.299 |
11/3 | +46.202 | +46.291 |
13/2 | -46.698 | -46.788 |
11/8 | +47.525 | +47.617 |
11/9 | -47.986 | -48.079 |
15/13 | -48.127 | -48.220 |
11/6 | +48.516 | +48.610 |
12/11 | +48.977 | +49.072 |
13/1 | -49.012 | -49.106 |
16/11 | -49.839 | -49.935 |
Ratio | Error (abs, ¢) | Error (rel, %) |
---|---|---|
4/3 | +0.991 | +0.993 |
8/3 | -1.323 | -1.325 |
16/9 | +1.982 | +1.986 |
2/1 | -2.314 | -2.318 |
15/1 | +2.669 | +2.674 |
3/2 | -3.305 | -3.311 |
16/3 | -3.637 | -3.644 |
9/8 | -4.296 | -4.304 |
4/1 | -4.628 | -4.637 |
15/2 | +4.983 | +4.992 |
3/1 | -5.619 | -5.629 |
10/1 | +5.974 | +5.985 |
9/4 | -6.609 | -6.622 |
8/1 | -6.941 | -6.955 |
15/4 | +7.296 | +7.311 |
6/1 | -7.932 | -7.948 |
5/1 | +8.287 | +8.303 |
9/2 | -8.923 | -8.941 |
16/1 | -9.255 | -9.273 |
15/8 | +9.610 | +9.629 |
12/1 | -10.246 | -10.266 |
5/2 | +10.601 | +10.622 |
9/1 | -11.237 | -11.259 |
10/3 | +11.592 | +11.614 |
16/15 | -11.924 | -11.947 |
5/4 | +12.915 | +12.940 |
5/3 | +13.906 | +13.933 |
14/5 | +14.017 | +14.044 |
8/5 | -15.229 | -15.258 |
11/7 | +15.965 | +15.996 |
6/5 | -16.220 | -16.251 |
7/5 | +16.331 | +16.362 |
10/9 | +17.211 | +17.244 |
16/5 | -17.543 | -17.577 |
14/11 | -18.279 | -18.315 |
12/5 | -18.534 | -18.569 |
10/7 | -18.645 | -18.681 |
9/5 | -19.524 | -19.562 |
15/14 | -19.636 | -19.674 |
15/7 | -21.949 | -21.992 |
14/1 | +22.304 | +22.347 |
7/1 | +24.618 | +24.666 |
7/2 | +26.932 | +26.984 |
14/3 | +27.923 | +27.977 |
7/4 | +29.246 | +29.302 |
7/3 | +30.237 | +30.295 |
8/7 | -31.560 | -31.621 |
11/5 | +32.296 | +32.359 |
7/6 | +32.551 | +32.614 |
14/9 | +33.542 | +33.606 |
16/7 | -33.874 | -33.939 |
11/10 | +34.610 | +34.677 |
12/7 | -34.864 | -34.932 |
9/7 | -35.855 | -35.925 |
13/9 | -37.775 | -37.848 |
15/11 | -37.915 | -37.988 |
13/12 | -38.765 | -38.840 |
16/13 | +39.756 | +39.833 |
11/1 | +40.584 | +40.662 |
13/6 | -41.079 | -41.159 |
13/8 | -42.070 | -42.151 |
11/2 | +42.897 | +42.980 |
13/3 | -43.393 | -43.477 |
13/4 | -44.384 | -44.470 |
11/4 | +45.211 | +45.299 |
11/3 | +46.202 | +46.291 |
13/2 | -46.698 | -46.788 |
11/8 | +47.525 | +47.617 |
11/6 | +48.516 | +48.610 |
13/1 | -49.012 | -49.106 |
16/11 | -49.839 | -49.935 |
12/11 | -50.830 | -50.928 |
15/13 | +51.680 | +51.780 |
11/9 | +51.821 | +51.921 |
13/10 | -54.985 | -55.091 |
13/5 | -57.299 | -57.410 |
14/13 | +71.316 | +71.454 |
13/7 | -73.630 | -73.772 |
13/11 | -89.595 | -89.768 |
See also
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |