This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

These temper out the keema, [-5 -3 3 1 = 875/864. Keemic temperaments include doublewide, flattone, porcupine, superkleismic, magic, keemun, undeka, and sycamore. Discussed below are quasitemp, chromo, barbad, hyperkleismic, and sevond.

Tempering out the keema is one of the two main ways septimal harmony is organized in EDOs of medium size, alongside myna. While myna makes the distance between 5/4 and 6/5 twice the distance between 9/7 and 5/4, keemic makes the two distances equal, resulting in the distance between the classical major and minor thirds being narrowed, or in other words 7/6 - 6/5 - 5/4 - 9/7 being made equidistant. EDOs with this structure include 15, 19, and 22.

Quasitemp

For the 5-limit version of this temperament, see Miscellaneous 5-limit temperaments #Quasitemp.

Subgroup: 2.3.5.7

Comma list: 875/864, 2401/2400

Mapping[1 5 5 5], 0 -14 -11 -9]]

Mapping generators: ~2, ~25/21

Wedgie⟨⟨ 14 11 9 -15 -25 -10 ]]

Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 292.710

Optimal ET sequence4, 37, 41

Badness: 0.060269

11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 385/384, 1375/1372

Mapping: [1 5 5 5 2], 0 -14 -11 -9 6]]

Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 292.547

Optimal ET sequence4, 37, 41, 119

Badness: 0.043209

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 196/195, 275/273, 385/384

Mapping: [1 5 5 5 2 2], 0 -14 -11 -9 6 7]]

Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 292.457

Optimal ET sequence4, 37, 41, 78, 119f

Badness: 0.032913

Quato

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 625/616

Mapping: [1 5 5 5 12], 0 -14 -11 -9 -35]]

Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 292.851

Optimal ET sequence41, 127cd, 168cd

Badness: 0.041170

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 105/104, 243/242, 275/273, 325/324

Mapping: [1 5 5 5 12 12], 0 -14 -11 -9 -35 -34]]

Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 292.928

Optimal ET sequence41, 86ce, 127cd

Badness: 0.030081

Chromo

For the 5-limit version of this temperament, see Miscellaneous 5-limit temperaments #Chromo.

Chromo represents the 13edf chain as a rank-2 temperament, with 6/5 and 5/4 mapped to 6 and 7 steps, respectively. Since the difference of those two intervals is abbreviated considerably from just, keemic provides the most meaningful 7-limit extension (setting 7/6, 6/5, 5/4, 9/7 equidistant) so that the temperament then approximates the 4:5:6:7 tetrad with 0:7:13:18 generator steps.

Note that if one allows a more complex mapping for prime 7 and wants a larger prime limit, one may prefer escapade.

Subgroup: 2.3.5.7

Comma list: 875/864, 2430/2401

Mapping[1 1 2 2], 0 13 7 18]]

Mapping generators: ~2, ~25/24

Optimal tuning (POTE): ~2 = 1\1, ~25/24 = 53.816

Optimal ET sequence22, 45, 67c

Badness: 0.090769

Barbad

Subgroup: 2.3.5.7

Comma list: 875/864, 16875/16807

Mapping[1 9 7 11], 0 -19 -12 -21]]

Mapping generators: ~2, ~98/75

Wedgie⟨⟨ 19 12 21 -25 -20 15 ]]

Optimal tuning (POTE): ~2 = 1\1, ~98/75 = 468.331

Optimal ET sequence18, 23d, 41

Badness: 0.110448

11-limit

Subgroup: 2.3.5.7.11

Comma list: 245/242, 540/539, 625/616

Mapping: [1 9 7 11 14], 0 -19 -12 -21 -27]]

Optimal tuning (POTE): ~2 = 1\1, ~98/75 = 468.367

Optimal ET sequence18e, 23de, 41, 228ccdd

Badness: 0.050105

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 196/195, 245/242, 275/273

Mapping: [1 9 7 11 14 8], 0 -19 -12 -21 -27 -11]]

Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 468.270

Optimal ET sequence18e, 23de, 41

Badness: 0.039183

Hyperkleismic

Subgroup: 2.3.5.7

Comma list: 875/864, 51200/50421

Mapping[1 -3 -2 2], 0 17 16 3]]

Mapping generators: ~2, ~6/5

Wedgie⟨⟨ 17 16 3 -14 -43 -38 ]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 323.780

Optimal ET sequence26, 37, 63

Badness: 0.157830

11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 385/384, 2420/2401

Mapping: [1 -3 -2 2 4], 0 17 16 3 -2]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 323.796

Optimal ET sequence26, 37, 63

Badness: 0.065356

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 169/168, 275/273, 385/384

Mapping: [1 -3 -2 2 4 1], 0 17 16 3 -2 10]]

Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 323.790

Optimal ET sequence26, 37, 63

Badness: 0.035724

Sevond

10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp.

Subgroup: 2.3.5.7

Comma list: 875/864, 327680/321489

Mapping[7 0 -6 53], 0 1 2 -3]]

Mapping generators: ~10/9, ~3

Optimal tuning (POTE): ~10/9 = 1\7, ~3/2 = 705.613

Optimal ET sequence7, 56, 63, 119

Badness: 0.206592

11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 385/384, 6655/6561

Mapping: [7 0 -6 53 2], 0 1 2 -3 2]]

Optimal tuning (POTE): ~10/9 = 1\7, ~3/2 = 705.518

Optimal ET sequence7, 56, 63, 119

Badness: 0.070437

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 169/168, 352/351, 385/384

Mapping: [7 0 -6 53 2 37], 0 1 2 -3 2 -1]]

Optimal tuning (POTE): ~10/9 = 1\7, ~3/2 = 705.344

Optimal ET sequence7, 56, 63, 119

Badness: 0.041238