Marvel
Marvel is the rank-3 temperament tempering out 225/224, the marvel comma. It has a canonical 11-limit extension adding 385/384 and 540/539 to the comma list.
The temperament was named by Gene Ward Smith in 2002–2003, when the 11-limit version was found first[1][2]. Gene carried it to the 7-limit restriction in 2004[3].
Extending marvel to the 13-limit is not as obvious. While Gene has chosen 351/350 as the canonical extension, hecate, tempering out 325/324 and 729/728, arguably makes more sense as it is closer in tuning[4]. Hecate has a natural extension to the no-17 19-limit, by tempering out 400/399 and 513/512.
See Marvel family #Marvel for technical data.
Interval lattice
-
11-limit marvel
-
13-limit marvel/hecate
-
2.3.5.7.11.13.19 subgroup marvel/hecate
Notation
Marvel can be notated the same as 5-limit just intonation since they share the same lattice structure. One way to do this is to take the conventional circle-of-fifths notation with an additional module of accidentals for the 81/80 comma. In this system, 5/4 is a major third, 7/4 an augmented sixth, and 11/8 a double diminished 5th.
Ratio | Nominal | Example |
---|---|---|
3/2 | Perfect fifth | C-G |
5/4 | Down major third | C-vE |
7/4 | Dudaugmented sixth | C-vvA# |
11/8 | Trup double-diminished fifth | C-^3Gbb |
13/8 | Dup minor sixth | C-^^Ab |
19/16 | Minor third | C-Eb |
Alternatively, it can be notated the same as full prime-limit just intonation, with a distinct accidental pair for each prime. That makes some intervals more intuitive, at the cost of hiding the structure of marvel tempering. For example, it is customary of the 5/4 to be a major third, and 7/4 to be a minor seventh. As a result, the fact that the 14/9 is a stack of two 5/4's is not revealed, and the related chords can be less convenient.
Chords
Marvel enables essentially tempered chords of marvel, keenanismic, swetismic, and undecimal marvel. Extending the temperament to the 13-limit through 325/324, resulting in hecate, enables chords of marveltwin and squbemic. Hecate hexad is a chord peculiar to this temperament.
Alternative 11-limit extensions give different sets of chords. One notable example, tempering out 441/440, enables prodigy chords.
Scales
Marvel hobbit scales
Undecimal marvel hobbit scales
Other marvel scales
Tunings
The marvel extension hecate has the no-17's 19-limit as its subgroup, and undecimal marvel (aka unimarv), the extension chosen by Gene Ward Smith, can be extended to the 13-limit. They merge in the rank-2 temperament catakleismic (which can be conceptualized as accepting both rank 3 marvel structures simultaneously), for which the smallest reasonable edo tuning for the full no-17's 19-limit is 53edo followed by 72edo, though in 53edo the 11 and 19 are a little off and in 72edo the 13 and 19 are a little off instead; 72edo is positioned better as a full 17-limit marvel system while 53edo is positioned better as a (potentially no-11's) 13-limit marvel system. If we focus on the 11-limit of undecimal marvel (discarding the mapping of 13), 31edo and 41edo are the smallest to clearly succeed, though many accept 41edo's mapping of ~13/8 to the neutral sixth and some accept that mapping for 31edo as contextually usable too.
53edo and 84edo are the smallest edos to tune the supermajor second ~8/7 flat (towards ~256/225), the subminor third ~7/6 sharp (towards ~75/64), the supermajor third ~9/7 flat (towards ~32/25) and the tritone ~7/5 sharp (towards ~45/32), such that every 7-limit 9-odd-limit interval is tuned between itself and the 5-limit interpretation it's separated from by 225/224, though even if you allow overtempering, the only smaller edo to satisfy all of these constraints is 12edo, which is a trivial tuning of it (meaning it is very high-damage owing to conflating many intervals so that the lattice is oversimplified). TE, CTE, CEE and CWE as well as the idea of tempering between pairs of 5- and 7-limit intervals separated by 225/224 all implicate these tuning tendencies of these 7-limit LCJI intervals for optimized 7-limit marvel tunings. Interestingly, 72edo fails some of these constraints and is less optimized for others, in the sense that 53edo tunes closer to the more complex 5-limit interpretations (which arguably need more tuning fidelity), which is something not taken into account by these tuning optimization schemes (so that they generally tune closer to LCJI). By contrast, 84edo, an overlooked superset of 12edo, has the benefit of being a high-limit performer in odd-limits 23 through 51 (inclusive). In fact, 53edo and 84edo are the only edos to satisfy all these constraints consistently when we include not overtempering to overshoot the 5-limit interval, and if we also require 28/27 to be sharp and 25/24 to be flat, 53edo is the only one, making it a uniquely optimized 7-limit marvel tuning; as far as the 9-odd-limit is concerned, the only intervals which are more than 25% off in 53edo are 7/5 and 10/7], so that it is almost consistent to distance 2, and many more complex intervals of the 7-limit are consistent as well (barring the stacking of prime 7 more than once, so that 5 * 7 = 35 is fine but not 7 * 7 = 49, which causes inconsistencies in the 7-limited tonality diamond).
Tuning spectrum
This spectrum assumes pure 2 and 7.
Eigenmonzo (Unchanged-interval) |
Fifth (¢) |
Major Third (¢) |
Comments |
---|---|---|---|
5/4 | 698.099 | 386.314 | |
6/5 | 700.027 | 384.386 | 7-odd-limit minimax |
15/11 | 700.351 | 384.062 | |
10/9 | 700.670 | 383.743 | 9-odd-limit minimax |
11/10 | 700.885 | 383.528 | |
15/13 | 700.916 | 383.497 | 15-odd-limit hecate minimax |
13/10 | 701.065 | 383.348 | 13-odd-limit hecate minimax |
13/11 | 701.199 | 383.214 | |
18/13 | 701.361 | 383.052 | |
13/12 | 701.480 | 382.933 | |
16/13 | 701.559 | 382.854 | |
4/3 | 701.955 | 382.458 | |
14/11 | 702.278 | 382.135 | |
11/8 | 702.278 | 382.135 | |
12/11 | 702.602 | 381.811 |
Music
- Pump1 – in pump12 1, 197edo tuning
- Semimarvelous Blue Drawf (2010) – in Dwarf17marv, equal-beating tuning
See also
- Marvel temperaments, the collection of rank-2 temperaments that temper out the marvel comma
Notes
- ↑ Yahoo! Tuning Group | Relative complexity and scale construction – first mention of marvel.
- ↑ Yahoo! Tuning Group | Top 135 11-limit planar temperaments – establishment as an 11-limit temperament.
- ↑ Yahoo! Tuning Group | Marvel
- ↑ Yahoo! Tuning Group | 13-limit marvel