The 87 equal temperament, often abbreviated 87-tET, 87-EDO, or 87-ET, is the scale derived by dividing the octave into 87 equally-sized steps, where each step represents a frequency ratio of 13.79 cents. It is solid as both a 13-limit (or 15 odd limit) and as a 5-limit system, and of course does well enough in any limit in between. It represents the 13-limit tonality diamond both uniquely and consistently, and is the smallest equal temperament to do so.

87et tempers out 196/195, 325/324, 352/351, 364/363, 385/384, 441/440, 625/624, 676/675, and 1001/1000 as well as the 29-comma, <46 -29|, the misty comma, <26 -12 -3|, the kleisma, 15625/15552, 245/243, 1029/1024, 3136/3125, and 5120/5103.

87et is a particularly good tuning for rodan temperament. The 8/7 generator of 17\87 is a remarkable 0.00062 cents sharper than the 13-limit POTE generator and is close to the 11-limit POTE generator also. Also, the 32\87 generator for clyde temperament is 0.04455 cents sharp of the 7-limit POTE generator.

Rank two temperaments

Periods
per
octave
Generator Cents Associated
ratio
Temperament
1 4\87 55.172 33/32 Sensa
1 10\87 137.931 13/12 Quartemka
1 14\87 193.103 28/25 Luna / Hemithirds
1 17\87 234.483 8/7 Rodan
1 23\87 317.241 6/5 Hanson / Countercata / Metakleismic
1 32\87 441.379 9/7 Clyde
1 38\87 524.138 65/48 Widefourth
1 40\87 551.724 11/8 Emkay
3 23\87 317.241 6/5 Tritikleismic
29 28\87 386.207 5/4 Mystery

87 can serve as a MOS in these:

  • 270&87 <<24 -9 -66 12 27 ... ||
  • 494&87 <<51 -1 -133 11 32 ... ||

13-limit detempering of 87et

See detempering.

In this table, "Difference in Cents" indicates whether the 87-interval is flat (negative) or sharp (positive) of the detempered interval. For example, 15 steps, at 206.89655 cents, corresponds to 9/8 and is 3.0 cents sharp.
todo: Align cent precision of size and difference!

Steps
of 87
Size in
Cents
Detempered
Interval
Difference
in Cents
1 13.79310 91/90 -5.3
2 27.58621 49/48 -8.1
3 41.37931 40/39 -2.5
4 55.17241 28/27 -7.8
5 68.96552 25/24 -1.7
6 82.75862 21/20 -1.7
7 96.55172 35/33 -5.3
8 110.34483 16/15 -1.4
9 124.13793 14/13 -4.2
10 137.93103 13/12 -0.6
11 151.72414 12/11 1.1
12 165.51724 11/10 0.5
13 179.31035 10/9 -3.1
14 193.10345 28/25 -3.1
15 206.89655 9/8 3.0
16 220.68966 25/22 -0.6
17 234.48276 8/7 3.3
18 248.27586 15/13 0.5
19 262.06897 7/6 -4.8
20 275.86207 75/64 1.3
21 289.65517 13/11 0.4
22 303.44828 25/21 1.6
23 317.24138 6/5 1.6
24 331.03448 40/33 -2.0
25 344.82759 11/9 -2.6
26 358.62069 16/13 -0.9
27 372.41379 26/21 2.7
28 386.20690 5/4 -0.1
29 400.00000 44/35 3.8
30 413.79310 14/11 -3.7
31 427.58621 32/25 0.2
32 441.37931 9/7 6.3
33 455.17241 13/10 1.0
34 468.96552 21/16 -1.8
35 482.75862 33/25 2.1
36 496.55172 4/3 -1.5
37 510.34483 35/26 -4.3
38 524.13793 27/20 4.6
39 537.93103 15/11 1.0
40 551.72414 11/8 0.4
41 565.51724 18/13 2.1
42 579.31035 7/5 -3.2
43 593.10345 45/32 2.9
44 606.89655 64/45 -2.9
45 620.68966 10/7 3.2
46 634.48276 13/9 -2.1
47 648.27586 16/11 -0.4
48 662.06897 22/15 -1.0
49 675.86207 40/27 -4.6
50 689.65517 52/35 4.3
51 703.44828 3/2 1.5
52 717.24138 50/33 -2.1
53 731.03448 32/21 1.8
54 744.82759 20/13 -1.0
55 758.62069 14/9 -6.3
56 772.41379 25/16 -0.2
57 786.20690 11/7 3.7
58 800.00000 35/22 -3.8
59 813.79310 8/5 0.1
60 827.58621 21/13 -2.7
61 841.37931 13/8 0.9
62 855.17241 18/11 2.6
63 868.96552 33/20 2.0
64 882.75862 5/3 -1.6
65 896.55172 42/25 -1.6
66 910.34483 22/13 -0.4
67 924.13793 75/44 0.9
68 937.93103 12/7 4.8
69 951.72414 26/15 -0.5
70 965.51724 7/4 -3.3
71 979.31035 44/25 0.6
72 993.10345 16/9 -3.0
73 1006.89655 25/14 3.1
74 1020.68966 9/5 3.1
75 1034.48276 20/11 -0.5
76 1048.27586 11/6 -1.1
77 1062.06897 24/13 0.6
78 1075.86207 13/7 4.2
79 1089.65517 15/8 1.4
80 1103.44828 66/35 5.3
81 1117.24138 21/11 -2.2
82 1131.03448 25/13 -1.1
83 1144.82759 27/14 7.8
84 1158.62069 39/20 2.5
85 1172.41379 55/28 3.6
86 1186.20690 99/50 3.6
87 1200.00000 2/1 0.0

Music