Catalog of rank-4 temperaments: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Links
+symbiotic
Line 453: Line 453:
== Semiporwellismic (16384/16335) ==
== Semiporwellismic (16384/16335) ==
See [[Semiporwellismic clan #Semiporwellismic]].  
See [[Semiporwellismic clan #Semiporwellismic]].  
== Symbiotic (19712/19683) ==
[[Subgroup]]: 2.3.5.7.11
[[Comma list]]: 19712/19683
[[Mapping]]: [{{val| 1 0 0 0 -8 }}, {{val| 0 1 0 0 9 }}, {{val| 0 0 1 0 0 }}, {{val| 0 0 0 1 -1 }}]
Mapping generators: ~2, ~3, ~5, ~7
[[Optimal tuning]] ([[POTE]]): ~3/2 = 702.2681, ~5/4 = 386.4785, ~7/4 = 968.9552
{{Val list|legend=1| 17c, 19e, 24, 34d, 41, 53, 58, 94, 99e, 118, 152, 270, 581, 733, 851, 1003, 1273, 1854, 2124b }}
[[Badness]]: 0.120 × 10<sup>-6</sup>
=== Tridecimal symbiotic ===
[[Subgroup]]: 2.3.5.7.11.13
[[Comma list]]: 2080/2079, 19712/19683
[[Mapping]]: [{{val| 1 0 0 0 -8 -13 }}, {{val| 0 1 0 0 9 12 }}, {{val| 0 0 1 0 0 -1 }}, {{val| 0 0 0 1 -1 0 }}]
[[Optimal tuning]] ([[POTE]]): ~3/2 = 702.2721, ~5/4 = 386.4790, ~7/4 = 968.9705
{{Val list|legend=1| 17c, 34dff, 36ce, 41, 53, 58, 94, 111, 152f, 212, 217, 270, 581, 851, 1003, 1273, 1854, 2124b, 3127bf }}
[[Badness]]: 3.31 × 10<sup>-6</sup>


== Olympic (131072/130977) ==
== Olympic (131072/130977) ==
[[Subgroup]]: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7.11


[[Comma list]]: 131072/130977
[[Comma list]]: [[131072/130977]]


[[Mapping]]: [{{val| 1 0 0 0 17 }}, {{val| 0 1 0 0 -5 }}, {{val| 0 0 1 0 0 }}, {{val| 0 0 0 1 -2 }}]
[[Mapping]]: [{{val| 1 0 0 0 17 }}, {{val| 0 1 0 0 -5 }}, {{val| 0 0 1 0 0 }}, {{val| 0 0 0 1 -2 }}]

Revision as of 23:11, 1 September 2022

A rank-4 temperament has a period and three additional independent generators. Typical examples include 7-limit JI, full 11-limit temperament with a one-dimensional comma basis, and full 13-limit temperament with a two-dimensional comma basis.

Ptolemismic (100/99)

Subgroup: 2.3.5.7.11

Comma list: 100/99

Mapping: [1 0 0 0 2], 0 1 0 0 -2], 0 0 1 0 2], 0 0 0 1 0]]

Optimal tuning (POTE): ~3/2 = 704.9532, ~5/4 = 384.0675, ~7/4 = 970.8803

Template:Val list *

* optimal patent val: 104

Badness: 0.0225 × 10-6

Biyatismic (121/120)

Subgroup: 2.3.5.7.11

Comma list: 121/120

Mapping: [1 0 1 0 2], 0 1 1 0 1], 0 0 -2 0 -1], 0 0 0 1 0]]

Mapping generators: ~2, ~3, ~11/10, ~7

Optimal tuning (POTE): ~3/2 = 701.4578, ~11/10 = 157.7466, ~7/4 = 966.9589

Template:Val list

Badness: 0.0345 × 10-6

Valinorsmic (176/175)

Subgroup: 2.3.5.7.11

Comma list: 176/175

Mapping: [1 0 0 0 -4], 0 1 0 0 0], 0 0 1 0 2], 0 0 0 1 1]]

Mapping generators: ~2, ~3, ~5, ~7

Optimal tuning (POTE): ~3/2 = 703.0449, ~5/4 = 389.7641, ~7/4 = 972.1113

Template:Val list

Badness: 0.0186 × 10-6

Rastmic (243/242)

Subgroup: 2.3.5.7.11

Comma list: 243/242

Mapping: [1 1 0 0 2], 0 2 0 0 5], 0 0 1 0 0], 0 0 0 1 0]]

Optimal tuning (POTE): ~11/9 = 350.5254, ~5/4 = 386.1653, ~7/4 = 968.6464

Template:Val list

Badness: 0.0509 × 10-6

Akua (352/351, 847/845)

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 847/845

Mapping: [1 0 0 10 0 5], 0 1 0 -6 0 -3], 0 0 1 1 0 0], 0 0 0 0 1 1]]

Mapping generators: ~2, ~3, ~5, ~11

Optimal tuning (POTE): ~3/2 = 702.9075, ~5/4 = 387.0723, ~11/8 = 551.4538

Template:Val list

Badness: 2.550 × 10-6

Werckismic (441/440)

Subgroup: 2.3.5.7.11

Comma list: 441/440

Mapping: [1 0 0 0 -3], 0 1 0 0 2], 0 0 1 0 -1], 0 0 0 1 2]]

Mapping generators:~2, ~3, ~5, ~7

Template:Val list

Commas 364/363, 441/440

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 441/440

Mapping: [1 0 0 0 -3 -8], 0 1 0 0 2 5], 0 0 1 0 -1 -2], 0 0 0 1 2 3]]

Mapping generators: ~2, ~3, ~5, ~7

Mapping to lattice: [0 1 1 -1 -1 0], 0 0 1 0 -1 -2], 0 0 1 1 1 1]]

Lattice basis:

3/2 length = 1.2263, 14/11 length = 1.4629, 21/16 length = 1.4657

Minimax tuning:

[[1 0 0 0 0 0, [5/3 0 1/3 -1/3 -1/3 1/3, [1/6 0 5/6 2/3 -5/6 1/3, [0 0 0 1 0 0, [1/6 0 -1/6 2/3 1/6 1/3, [0 0 0 0 0 1]
Eigenmonzos: 2, 11/10, 8/7, 16/13
[[1 0 0 0 0 0, [5/4 1/4 1/4 -1/4 -1/4 1/4, [5/4 -3/4 5/4 -1/4 -1/4 1/4, [17/8 -11/8 5/8 -1/8 3/8 1/8, [5/2 -3/2 1/2 -1/2 1/2 1/2, [17/8 -11/8 5/8 -9/8 3/8 9/8]
Eigenmonzos: 2, 14/13, 6/5, 11/9

Template:Val list

Commas 351/350, 441/440

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 441/440

Mapping: [1 0 0 0 -3 1], 0 1 0 0 2 -3], 0 0 1 0 -1 2], 0 0 0 1 2 1]]

Mapping generators: ~2, ~3, ~5, ~7

Template:Val list

Commas 196/195, 352/351

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351

Mapping: [1 0 0 0 -3 2], 0 1 0 0 2 -1], 0 0 1 0 -1 -1], 0 0 0 1 2 2]]

Mapping generators: ~2, ~3, ~5, ~7

Template:Val list

Tannic

Subgroup: 2.3.5.7.11.13

Comma list: 441/440, 1287/1280

Mapping: [1 0 0 0 -3 11], 0 1 0 0 2 -4], 0 0 1 0 -1 2], 0 0 0 1 2 -2]]

Mapping generators: ~2, ~3, ~5, ~7

Template:Val list

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 273/272, 441/440, 561/560

Mapping: [1 0 0 0 -3 11 7], 0 1 0 0 2 -4 -3], 0 0 1 0 -1 2 2], 0 0 0 1 2 -2 -1]]

Mapping generators: ~2, ~3, ~5, ~7

Template:Val list

Commas 441/440, 847/845

Subgroup: 2.3.5.7.11.13

Comma list: 441/440, 847/845

Mapping: [1 0 0 0 -3 -3], 0 1 0 0 2 2], 0 0 1 1 1 1], 0 0 0 2 4 5]]

Mapping generators: ~2, ~3, ~5, ~13/11

Template:Val list

Keenanismic (385/384)

Subgroup: 2.3.5.7.11

Comma list: 385/384

Mapping: [1 0 0 0 7], 0 1 0 0 1], 0 0 1 0 -1], 0 0 0 1 -1]]

Mapping generators: ~2, ~3, ~5, ~7

Transpose: [2 3 5 7 385/35]

Minimax tuning:

[[1 0 0 0 0, [0 1 0 0 0, [7/3 1/3 2/3 -1/3 -1/3, [7/3 1/3 -1/3 2/3 -1/3, [7/3 1/3 -1/3 -1/3 2/3]
Eigenmonzos: 2, 3, 7/5, 11/5

Template:Val list

Badness: 15.159 × 10-9

Martwin

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 385/384

Mapping: [1 0 0 0 7 2], 0 1 0 0 1 4], 0 0 1 0 -1 -2], 0 0 0 1 -1 0]]

Mapping generators: ~2, ~3, ~5, ~7

Transpose: [2 3 5 7 385/35 324/25]

Lattice basis:

4/3 length = 1.0820, 6/5 length = 1.3935, 10/9 length = 1.6247

Minimax tuning: [to be confirmed]

[1 0 0 0 0 0], 0 1 0 0 0 0], 2/3 4/3 1/3 0 0 -1/3], 19/6 -1/6 -1/6 1/2 -1/2 1/6], 19/6 -1/6 -1/6 -1/2 1/2 1/6], 2/3 4/3 -2/3 0 0 2/3]]
Eigenmonzos: 2, 14/11, 13/10, 4/3

Template:Val list

Badness: 2.206 × 10-6

Ancient

Subgroup: 2.3.5.7.11.13

Comma list: 385/384, 625/624

Mapping: [1 0 0 0 7 -4], 0 1 0 0 1 -1], 0 0 1 0 -1 4], 0 0 0 1 -1 0]]

Transpose: [2 3 5 7 385/35 625/48]

Template:Val list

Badness: 2.573 × 10-6

Commas 351/350, 385/384

Subgroup: 2.3.5.7.11.13

Comma list: 351/350, 385/384

Mapping: [1 0 0 0 7 1], 0 1 0 0 1 -3], 0 0 1 0 -1 2], 0 0 0 1 -1 1]]

Mapping generators: ~2, ~3, ~5, ~7

Template:Val list

Commas 352/351, 385/384

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 385/384

Mapping: [1 0 0 0 7 12], 0 1 0 0 1 -2], 0 0 1 0 -1 -1], 0 0 0 1 -1 -1]]

Mapping generators: ~2, ~3, ~5, ~7

Template:Val list

Commas 364/363, 385/384

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 385/384

Mapping: [1 0 0 0 7 12], 0 1 0 0 1 3], 0 0 1 0 -1 -2], 0 0 0 1 -1 -3]]

Mapping generators: ~2, ~3, ~5, ~7

Template:Val list

Commas 385/384, 847/845

Subgroup: 2.3.5.7.11.13

Comma list: 385/384, 847/845

Mapping: [1 0 0 0 7 7], 0 1 0 0 1 1], 0 0 1 1 -2 -2], 0 0 0 2 -2 -1]]

Mapping generators: ~2, ~3, ~5, ~13/11

Template:Val list

Swetismic (540/539)

Subgroup: 2.3.5.7.11

Comma list: 540/539

Mapping: [1 0 0 0 2], 0 1 0 0 3], 0 0 1 0 1], 0 0 0 1 -2]]

Mapping generators: ~2, ~3, ~5, ~7

Template:Val list

Commas 540/539, 847/845

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 847/845

Mapping: [1 0 0 0 2 2], 0 1 0 0 3 3], 0 0 1 1 -1 -1], 0 0 0 2 -4 -3]]

Mapping generators: ~2, ~3, ~5, ~13/11

Template:Val list

Commas 540/539, 625/624

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 625/624

Mapping: [1 0 0 0 2 -4], 0 1 0 0 3 -1], 0 0 1 0 1 4], 0 0 0 1 -2 0]]

Mapping generators: ~2, ~3, ~5, ~7

Template:Val list

Commas 540/539, 676/675

Subgroup: 2.3.5.7.11

Comma list: 540/539, 676/675

Mapping: [1 0 0 0 2 -1], 0 2 0 0 6 3], 0 0 1 0 1 1], 0 0 0 1 -2 0]]

Mapping generators: ~2, ~26/15, ~5, ~7

Template:Val list

Pentacircle (896/891)

Subgroup: 2.3.5.7.11

Comma list: 896/891

Mapping: [1 0 0 0 7], 0 1 0 0 -4], 0 0 1 0 0], 0 0 0 1 1]]

Optimal tuning (POTE): ~3/2 = 703.8345, ~5/4 = 387.7585, ~7/4 = 969.8722

Template:Val list

Badness: 0.0658 × 10-6

Commas 352/351, 364/363

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 364/363

Mapping: [1 0 0 0 7 12], 0 1 0 0 -4 -7], 0 0 1 0 0 0], 0 0 0 1 1 1]]

Template:Val list

Badness: 3.375 × 10-6

Topsy (847/845, 1001/1000)

Subgroup: 2.3.5.7.11.13

Comma list: 847/845, 1001/1000

Mapping: [1 0 0 2 0 1], 0 1 0 0 0 0], 0 0 1 1 1 1], 0 0 0 4 -3 1]]

Mapping generators: ~2, ~3, ~5, ~13/10

Template:Val list

Lehmerismic (3025/3024)

Subgroup: 2.3.5.7.11

Comma list: 3025/3024

Mapping: [1 0 0 0 2], 0 1 0 1 2], 0 0 1 0 -1], 0 0 0 2 1]]

Mapping generators: ~2, ~3, ~5, ~55/36

Template:Val list

Trimitone (8019/8000)

Subgroup: 2.3.5.7.11

Comma list: 8019/8000

Mapping: [1 0 0 0 6], 0 1 0 0 -6], 0 0 1 0 3], 0 0 0 1 0]]

Mapping generators: ~2, ~3, ~5, ~7

Template:Val list

Kalismic (9801/9800)

Subgroup: 2.3.5.7.11

Comma list: 9801/9800

Mapping: [2 0 0 0 3], 0 1 0 0 -2], 0 0 1 0 1], 0 0 0 1 1]]

Mapping generators: ~99/70, ~3, ~5, ~7

Template:Val list

Commas 1716/1715, 2080/2079

Subgroup: 2.3.5.7.11.13

Comma list: 1716/1715, 2080/2079

Mapping: [2 0 0 0 3 -7], 0 1 0 0 -2 1], 0 0 1 0 1 0], 0 0 0 1 1 2]]

Mapping generators: ~99/70, ~3, ~5, ~7

Lattice basis:

3/2 length = 1.1956, 7/4 length = 1.4506, 14/13 length = 1.8299

Minimax tuning:

[[1 0 0 0 0 0, [7/10 4/5 0 -2/5 0 1/5, [7/10 -1/5 1 -2/5 0 1/5, [7/5 -2/5 0 1/5 0 2/5, [11/5 -11/5 1 3/5 0 1/5, [0 0 0 0 0 1]
Eigenmonzos: 2, 6/5, 16/13, 9/7

Template:Val list

Semicanousmic (14641/14580)

Subgroup: 2.3.5.7.11

Comma list: 14641/14580

Mapping: [1 0 2 0 1], 0 1 2 0 2], 0 0 -4 0 -1], 0 0 0 1 0]]

Mapping generators: ~2, ~3, ~18/11, ~7

Optimal tuning (POTE): ~3/2 = 702.2503, ~18/11 = 854.5421, ~7/4 = 968.6866

Template:Val list

Badness: 0.351 × 10-6

Tridecimal semicanousmic

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 14641/14580

Mapping: [1 0 2 0 1 -6], 0 1 2 0 2 3], 0 0 -4 0 -1 3], 0 0 0 1 0 1]]

Optimal tuning (POTE): ~3/2 = 702.4931, ~18/11 = 854.6400, ~7/4 = 969.0099

Optimal GPV sequence: Template:Val list

Badness: 17.1 × 10-6

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 715/714, 1089/1088, 14641/14580

Mapping: [1 0 2 0 1 -6 -4], 0 1 2 0 2 3 6], 0 0 -4 0 -1 3 -2], 0 0 0 1 0 1 0]]

Optimal tuning (POTE): ~3/2 = 702.4099, ~18/11 = 854.6338, ~7/4 = 969.0228

Optimal GPV sequence: Template:Val list

Badness: 34.0 × 10-6

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 715/714, 1089/1088, 1216/1215, 1445/1444

Mapping: [1 0 2 0 1 -6 -4 -4], 0 1 2 0 2 3 6 7], 0 0 -4 0 -1 3 -2 -4], 0 0 0 1 0 1 0 0]]

Optimal tuning (POTE): ~3/2 = 702.3413, ~18/11 = 854.6472, ~7/4 = 968.9734

Optimal GPV sequence: Template:Val list

Badness: 41.9 × 10-6

Semiporwellismic (16384/16335)

See Semiporwellismic clan #Semiporwellismic.

Symbiotic (19712/19683)

Subgroup: 2.3.5.7.11

Comma list: 19712/19683

Mapping: [1 0 0 0 -8], 0 1 0 0 9], 0 0 1 0 0], 0 0 0 1 -1]]

Mapping generators: ~2, ~3, ~5, ~7

Optimal tuning (POTE): ~3/2 = 702.2681, ~5/4 = 386.4785, ~7/4 = 968.9552

Template:Val list

Badness: 0.120 × 10-6

Tridecimal symbiotic

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 19712/19683

Mapping: [1 0 0 0 -8 -13], 0 1 0 0 9 12], 0 0 1 0 0 -1], 0 0 0 1 -1 0]]

Optimal tuning (POTE): ~3/2 = 702.2721, ~5/4 = 386.4790, ~7/4 = 968.9705

Template:Val list

Badness: 3.31 × 10-6

Olympic (131072/130977)

Subgroup: 2.3.5.7.11

Comma list: 131072/130977

Mapping: [1 0 0 0 17], 0 1 0 0 -5], 0 0 1 0 0], 0 0 0 1 -2]]

Mapping generators: ~2, ~3, ~5, ~7

Template:Val list

Tridecimal olympic

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 4096/4095

Mapping: [1 0 0 0 17 12], 0 1 0 0 -5 -2], 0 0 1 0 0 -1], 0 0 0 1 -2 -1]]

Mapping generators: ~2, ~3, ~5, ~7

Template:Val list *

* optimal patent val: 3044