130edo: Difference between revisions
Move temperament generator info to RTT section and add ratios instead |
→Regular temperament properties: expansion |
||
Line 295: | Line 295: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
Note: temperaments supported by [[65edo|65et]] are not included. | |||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
Line 320: | Line 322: | ||
| 15/13 | | 15/13 | ||
| [[Hemischis]] | | [[Hemischis]] | ||
|- | |||
| 1 | |||
| 41\130 | |||
| 378.46 | |||
| 56/45 | |||
| [[Subpental]] | |||
|- | |- | ||
| 2 | | 2 | ||
Line 326: | Line 334: | ||
| [[21/20]] | | [[21/20]] | ||
| [[Harry]] | | [[Harry]] | ||
|- | |||
| 2 | |||
| 17\130 | |||
| 156.92 | |||
| 35/32 | |||
| [[Bison]] | |||
|- | |||
| 2 | |||
| 19\130 | |||
| 175.38 | |||
| 448/405 | |||
| [[Bisesqui]] | |||
|- | |||
| 2 | |||
| 54\130<br>(11\130) | |||
| 498.46<br>(101.54) | |||
| 4/3<br>(35/33) | |||
| [[Bischismic]] | |||
|- | |||
| 26 | |||
| 54\130<br>(1\130) | |||
| 498.46<br>(9.23) | |||
| 4/3<br>(225/224) | |||
| [[Bosonic]] | |||
|} | |} | ||
Revision as of 10:54, 30 June 2021
130edo divides the octave into 130 parts of size 9.231 cents each.
Theory
130edo is a zeta peak edo, a zeta peak integer edo, and a zeta integral edo but not a gap edo. It can be used to tune a variety of temperaments, including hemiwürschmidt, sesquiquartififths, harry and hemischis. It also can be used to tune the rank-three temperament jove, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the optimal patent val for 11-limit hemiwürschmidt and sesquart and 13-limit harry temperaments.
Prime harmonics
Script error: No such module "primes_in_edo".
Intervals
Degree | Cents | Approximate Ratios |
---|---|---|
0 | 0.000 | 1/1 |
1 | 9.231 | 126/125, 225/224 |
2 | 18.462 | 81/80 |
3 | 27.692 | 64/63 |
4 | 36.923 | 49/48, 50/49 |
5 | 46.154 | 36/35 |
6 | 55.385 | 33/32 |
7 | 64.615 | 28/27, 27/26 |
8 | 73.846 | 25/24 |
9 | 83.077 | 21/20, 22/21 |
10 | 92.308 | 135/128 |
11 | 101.538 | 35/33 |
12 | 110.769 | 16/15 |
13 | 120.000 | 15/14 |
14 | 129.231 | 14/13 |
15 | 138.462 | 13/12 |
16 | 147.692 | 12/11 |
17 | 156.923 | 35/32 |
18 | 166.154 | 11/10 |
19 | 175.385 | 72/65 |
20 | 184.615 | 10/9 |
21 | 193.846 | 28/25 |
22 | 203.077 | 9/8 |
23 | 212.308 | 44/39 |
24 | 221.538 | 25/22 |
25 | 230.769 | 8/7 |
26 | 240.000 | 55/48 |
27 | 249.231 | 15/13 |
28 | 258.462 | 64/55 |
29 | 267.692 | 7/6 |
30 | 276.923 | 75/64 |
31 | 286.154 | 13/11 |
32 | 295.385 | 32/27 |
33 | 304.615 | 25/21 |
34 | 313.846 | 6/5 |
35 | 323.077 | 65/54 |
36 | 332.308 | 40/33 |
37 | 341.538 | 39/32 |
38 | 350.769 | 11/9, 27/22 |
39 | 360.000 | 16/13 |
40 | 369.231 | 26/21 |
41 | 378.462 | 56/45 |
42 | 387.692 | 5/4 |
43 | 396.923 | 63/50 |
44 | 406.154 | 81/64 |
45 | 415.385 | 14/11 |
46 | 424.615 | 32/25 |
47 | 433.846 | 9/7 |
48 | 443.077 | 128/99 |
49 | 452.308 | 13/10 |
50 | 461.538 | 72/55 |
51 | 470.769 | 21/16 |
52 | 480.000 | 33/25 |
53 | 489.231 | 250/189 |
54 | 498.462 | 4/3 |
55 | 507.692 | 75/56 |
56 | 516.923 | 27/20 |
57 | 526.154 | 65/48 |
58 | 535.385 | 15/11 |
59 | 544.615 | 48/35 |
60 | 553.846 | 11/8 |
61 | 563.077 | 18/13 |
62 | 572.308 | 25/18 |
63 | 581.538 | 7/5 |
64 | 590.769 | 45/32 |
65 | 600.000 | 99/70, 140/99 |
… | … | … |
Regular temperament properties
Commas
7-limit commas: 2401/2400, 3136/3125, 19683/19600
11-limit commas: 441/440, 540/539, 3136/3125, 4000/3993
13-limit commas: 3136/3125, 243/242, 441/440, 351/350, 364/363
17-limit commas: 221/220, 364/363, 442/441, 595/594, 1275/1274, 4913/4875
Rank-2 temperaments
Note: temperaments supported by 65et are not included.
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 19\130 | 175.38 | 72/65 | Sesquiquartififths / sesquart |
1 | 21\130 | 193.85 | 28/25 | Didacus / hemiwürschmidt |
1 | 27\130 | 249.23 | 15/13 | Hemischis |
1 | 41\130 | 378.46 | 56/45 | Subpental |
2 | 9\130 | 83.08 | 21/20 | Harry |
2 | 17\130 | 156.92 | 35/32 | Bison |
2 | 19\130 | 175.38 | 448/405 | Bisesqui |
2 | 54\130 (11\130) |
498.46 (101.54) |
4/3 (35/33) |
Bischismic |
26 | 54\130 (1\130) |
498.46 (9.23) |
4/3 (225/224) |
Bosonic |
Scales
Step | Cents | Distance to the nearest JI interval (selected ratios) |
---|---|---|
13 (13/130) | 120.000 | 15/14 (+0.557 ¢) |
7 (20/130) | 184.615 | 10/9 (+2.211 ¢) |
9 (29/130) | 267.692 | 7/6 (+0,821 ¢) |
9 (38/130) | 350.769 | 11/9 (+3.361 ¢) |
9 (47/130) | 433.846 | 9/7 (-1.238 ¢) |
7 (54/130) | 498.462 | 4/3 (+0.417 ¢) |
13 (67/130) | 618.462 | 10/7 (+0.974 ¢) |
9 (76/130) | 701.538 | 3/2 (-0.417 ¢) |
7 (83/130) | 766.154 | 14/9 (+1.238 ¢) |
13 (96/130) | 886.154 | 5/3 (+1.795 ¢) |
5 (101/130) | 932.308 | 12/7 (-0.821 ¢) |
13 (114/130) | 1052.308 | 11/6 (+2.945 ¢) |
7 (121/130) | 1116.923 | 21/11 (-2.540 ¢) |
9 (130/130) | 1200.000 | Octave (2/1, ±0 ¢) |
Music
- The Paradise of Cantor play by Gene Ward Smith
- "Narrative Wars" by Sevish (uses a 14-tone (13 7 9 9 9 7 13 9 7 13 5 13 7 9) subset of 130-EDO, from the 2016 compilation album "Next Xen")