Sensamagic clan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
No edit summary
Xenllium (talk | contribs)
No edit summary
Line 2: Line 2:


= Lambda =
= Lambda =
Subgroup: 3.5.7
Subgroup: 3.5.7


Line 18: Line 17:


== Extensions ==
== Extensions ==
For full 7-limit extensions, we have sensi, bohpier, sensa/escaped, salsa, pycnic, cohemiripple, superthird, magus and leapweek discussed below, as well as [[Father family #Father|father]], [[Dicot family #Sidi|sidi]], [[Meantone family #Godzilla|godzilla]], [[Porcupine family #Hedgehog|hedgehog]], [[Archytas clan #Superpyth|superpyth]], [[Augmented family #Hemiaug|hemiaug]], [[Magic family #magic|magic]], [[Gamelismic clan#Rodan|rodan]], [[Tetracot family #Octacot|octacot]], [[Diaschismic family #Shrutar|shrutar]], and [[Kleismic family #Clyde|clyde]] discussed elsewhere.  
For full 7-limit extensions, we have sensi, bohpier, escaped, salsa, pycnic, cohemiripple, superthird, magus and leapweek discussed below, as well as [[Father family #Father|father]], [[Dicot family #Sidi|sidi]], [[Meantone family #Godzilla|godzilla]], [[Porcupine family #Hedgehog|hedgehog]], [[Archytas clan #Superpyth|superpyth]], [[Augmented family #Hemiaug|hemiaug]], [[Magic family #magic|magic]], [[Gamelismic clan#Rodan|rodan]], [[Tetracot family #Octacot|octacot]], [[Diaschismic family #Shrutar|shrutar]], [[Amity family #Bamity|bamity]], and [[Kleismic family #Clyde|clyde]] discussed elsewhere.  


Tempering out 245/243 alone in the full 7-limit leads to a [[Planar temperament|rank-3 temperament]], sensamagic, for which [[283edo]] is the [[optimal patent val]].
Tempering out 245/243 alone in the full 7-limit leads to a [[Planar temperament|rank-3 temperament]], sensamagic, for which [[283edo]] is the [[optimal patent val]].
Line 28: Line 27:
Sensi tempers out [[126/125]], [[686/675]] and [[4375/4374]] in addition to [[245/243]], and can be described as the 19&27 temperament. It has as a generator half the size of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as 2.3.5.7.13 sensi (sensation) tempers out 91/90. 22/17, in the middle, is even closer to the generator. [[46edo]] is an excellent sensi tuning, and MOS of size 11, 19 and 27 are available. The name "sensi" is a play on the words "semi-" and "sixth."
Sensi tempers out [[126/125]], [[686/675]] and [[4375/4374]] in addition to [[245/243]], and can be described as the 19&27 temperament. It has as a generator half the size of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as 2.3.5.7.13 sensi (sensation) tempers out 91/90. 22/17, in the middle, is even closer to the generator. [[46edo]] is an excellent sensi tuning, and MOS of size 11, 19 and 27 are available. The name "sensi" is a play on the words "semi-" and "sixth."


== 7-limit ==
== Septimal sensi ==
Subgroup: 2.3.5.7
Subgroup: 2.3.5.7


Line 308: Line 307:
{{Val list|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }}
{{Val list|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }}


[[Badness]]: 0.08015
[[Badness]]: 0.080152


== 11-limit ==
== 11-limit ==
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Line 320: Line 318:
POTE generator: ~11/9 = 351.014
POTE generator: ~11/9 = 351.014


{{Val list|legend=1| 17, 24, 41, 106d, 147d }}
Vals: {{Val list| 17, 24, 41, 106d, 147d }}


Badness: 0.0394
Badness: 0.039444


== 13-limit ==
== 13-limit ==
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Line 334: Line 331:
POTE generator: ~11/9 = 351.025
POTE generator: ~11/9 = 351.025


{{Val list|legend=1| 17, 24, 41, 106df, 147df }}
Vals: {{Val list| 17, 24, 41, 106df, 147df }}


Badness: 0.0310
Badness: 0.030793


= Pycnic =
= Pycnic =
Line 353: Line 350:
{{Val list|legend=1| 17, 19, 55c, 74cd, 93cdd }}
{{Val list|legend=1| 17, 19, 55c, 74cd, 93cdd }}


[[Badness]]: 0.0737
[[Badness]]: 0.073735


= Cohemiripple =
= Cohemiripple =
Line 362: Line 359:
[[Comma list]]: 245/243, 1323/1250
[[Comma list]]: 245/243, 1323/1250


[[Mapping]]: [{{val| 1 7 11 12 }}, {{val| 0 -10 -16 -17 }}]
[[Mapping]]: [{{val| 1 -3 -5 -5 }}, {{val| 0 10 16 17 }}]


{{Multival|legend=1| 10 16 17 2 -1 -5 }}
{{Multival|legend=1| 10 16 17 2 -1 -5 }}
Line 370: Line 367:
{{Val list|legend=1| 11cd, 13cd, 24 }}
{{Val list|legend=1| 11cd, 13cd, 24 }}


[[Badness]]: 0.1902
[[Badness]]: 0.190208


== 11-limit ==
== 11-limit ==
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 77/75, 243/242, 245/242
Comma list: 77/75, 243/242, 245/242


Mapping: [{{val| 1 7 11 12 17 }}, {{val| 0 -10 -16 -17 -25 }}]
Mapping: [{{val| 1 -3 -5 -5 -8 }}, {{val| 0 10 16 17 25 }}]


POTE generator: ~7/5 = 549.945
POTE generator: ~7/5 = 549.945


{{Val list|legend=1| 11cdee, 13cdee, 24 }}
Vals: {{Val list| 11cdee, 13cdee, 24 }}


Badness: 0.0827
Badness: 0.082716


== 13-limit ==
== 13-limit ==
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 66/65, 77/75, 147/143, 243/242
Comma list: 66/65, 77/75, 147/143, 243/242


Mapping: [{{val| 1 7 11 12 17 14 }}, {{val| 0 -10 -16 -17 -25 -19 }}]
Mapping: [{{val| 1 -3 -5 -5 -8 -5 }}, {{val| 0 -10 -16 -17 -25 -19 }}]


POTE generator: ~7/5 = 549.958
POTE generator: ~7/5 = 549.958


{{Val list|legend=1| 11cdeef, 13cdeef, 24 }}
Vals: {{Val list| 11cdeef, 13cdeef, 24 }}


Badness: 0.0499
Badness: 0.049933


= Superthird =
= Superthird =
Subgroup: 2.3.5.7
Subgroup: 2.3.5.7


[[Comma list]]: 245/243, 78125/76832
[[Comma list]]: 245/243, 78125/76832


[[Mapping]]: [{{val| 1 13 15 25 }}, {{val| 0 -18 -20 -35 }}]
[[Mapping]]: [{{val| 1 -5 -5 -10 }}, {{val| 0 18 20 35 }}]


{{Multival|legend=1| 18 20 35 -10 5 25 }}
{{Multival|legend=1| 18 20 35 -10 5 25 }}
Line 414: Line 408:
{{Val list|legend=1| 11cd, 30d, 41, 317bcc, 358bcc, 399bcc }}
{{Val list|legend=1| 11cd, 30d, 41, 317bcc, 358bcc, 399bcc }}


[[Badness]]: 0.1394
[[Badness]]: 0.139379


== 11-limit ==
== 11-limit ==
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 100/99, 245/243, 78125/76832
Comma list: 100/99, 245/243, 78125/76832


Mapping: [{{val| 1 13 15 25 6 }}, {{val| 0 -18 -20 -35 -4 }}]
Mapping: [{{val| 1 -5 -5 -10 2 }}, {{val| 0 18 20 35 4 }}]


POTE generator: ~9/7 = 439.152
POTE generator: ~9/7 = 439.152


{{Val list|legend=1| 11cd, 30d, 41, 153be, 194be, 235bcee }}
Vals: {{Val list| 11cd, 30d, 41, 153be, 194be, 235bcee }}


Badness: 0.0709
Badness: 0.070917


== 13-limit ==
== 13-limit ==
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 100/99, 144/143, 196/195, 1375/1352
Comma list: 100/99, 144/143, 196/195, 1375/1352


Mapping: [{{val| 1 13 15 25 6 24 }}, {{val| 0 -18 -20 -35 -4 -32 }}]
Mapping: [{{val| 1 -5 -5 -10 2 -8 }}, {{val| 0 18 20 35 4 32 }}]


POTE generator: ~9/7 = 439.119
POTE generator: ~9/7 = 439.119


{{Val list|legend=1| 11cdf, 30df, 41 }}
Vals: {{Val list| 11cdf, 30df, 41 }}


Badness: 0.0528
Badness: 0.052835


= Magus =
= Magus =
Line 449: Line 441:
[[Comma list]]: 50331648/48828125
[[Comma list]]: 50331648/48828125


[[Mapping]]: [{{val| 1 9 3 }}, {{val| 0 -11 -1 }}]
[[Mapping]]: [{{val| 1 -2 2 }}, {{val| 0 11 1 }}]


[[POTE generator]]: ~5/4 = 391.225
[[POTE generator]]: ~5/4 = 391.225
Line 455: Line 447:
{{Val list|legend=1| 46, 181c, 227c, 273c, 319c }}
{{Val list|legend=1| 46, 181c, 227c, 273c, 319c }}


[[Badness]]: 0.3602
[[Badness]]: 0.360162


== 7-limit ==
== 7-limit ==
Line 462: Line 454:
[[Comma list]]: 245/243, 28672/28125
[[Comma list]]: 245/243, 28672/28125


[[Mapping]]: [{{val| 1 9 3 21 }}, {{val| 0 -11 -1 -27 }}]
[[Mapping]]: [{{val| 1 -2 2 -6 }}, {{val| 0 11 1 27 }}]


{{Multival|legend=1| 11 1 27 -24 12 60 }}
{{Multival|legend=1| 11 1 27 -24 12 60 }}
Line 477: Line 469:
Comma list: 176/175, 245/243, 1331/1323
Comma list: 176/175, 245/243, 1331/1323


Mapping: [{{val| 1 9 3 21 23 }}, {{val| 0 -11 -1 -27 -29 }}]
Mapping: [{{val| 1 -2 2 -6 -6 }}, {{val| 0 11 1 27 29 }}]


POTE generator: ~5/4 = 391.503
POTE generator: ~5/4 = 391.503


{{Val list|legend=1| 46, 95, 141bc }}
Vals: {{Val list| 46, 95, 141bc }}


Badness: 0.0451
Badness: 0.045108


== 13-limit ==
== 13-limit ==
Line 490: Line 482:
Comma list: 91/90, 176/175, 245/243, 1331/1323
Comma list: 91/90, 176/175, 245/243, 1331/1323


Mapping: [{{val| 1 9 3 21 23 1 }}, {{val| 0 -11 -1 -27 -29 4 }}]
Mapping: [{{val| 1 -2 2 -6 -6 5 }}, {{val| 0 11 1 27 29 -4 }}]


POTE generator: ~5/4 = 391.366
POTE generator: ~5/4 = 391.366


{{Val list|legend=1| 46, 233bcff, 279bccff }}
Vals: {{Val list| 46, 233bcff, 279bccff }}


Badness: 0.0430
Badness: 0.043024


= Leapweek =
= Leapweek =
Line 509: Line 501:
{{Val list|legend=1| 17, 29c, 46, 109, 155, 264b, 419b }}
{{Val list|legend=1| 17, 29c, 46, 109, 155, 264b, 419b }}


[[Badness]]: 0.14058
[[Badness]]: 0.140577


== 11-limit ==
== 11-limit ==
Line 520: Line 512:
POTE generator: ~3/2 = 704.554
POTE generator: ~3/2 = 704.554


{{Val list|legend=1| 17, 29c, 46, 109, 264b, 373b, 637be }}
Vals: {{Val list| 17, 29c, 46, 109, 264b, 373b, 637be }}


Badness: 0.0507
Badness: 0.050679


== 13-limit ==
== 13-limit ==
Line 533: Line 525:
POTE generator: ~3/2 = 704.571
POTE generator: ~3/2 = 704.571


{{Val list|legend=1| 17, 29c, 46, 63, 109, 218f, 373bf }}
Vals: {{Val list| 17, 29c, 46, 63, 109, 218f, 373bf }}


Badness: 0.0327
Badness: 0.032727


=Semiwolf=
= Semiwolf =
[[Subgroup]]: 3/2.7/4.5/2
[[Subgroup]]: 3/2.7/4.5/2


Line 548: Line 540:
[[Vals]]: {{val list|8edf, 11edf, 13edf}}
[[Vals]]: {{val list|8edf, 11edf, 13edf}}


==Semilupine==
== Semilupine ==
[[Subgroup]]: 3/2.7/4.5/2.11/4
[[Subgroup]]: 3/2.7/4.5/2.11/4


Line 559: Line 551:
[[Vals]]: {{val list|8edf, 13edf}}
[[Vals]]: {{val list|8edf, 13edf}}


==Hemilycan==
== Hemilycan ==
[[Subgroup]]: 3/2.7/4.5/2.11/4
[[Subgroup]]: 3/2.7/4.5/2.11/4



Revision as of 05:57, 30 May 2021

The sensamagic clan tempers out the sensamagic comma, 245/243, a triprime comma with no factors of 2, 0 -5 1 2] to be exact.

Lambda

Subgroup: 3.5.7

Comma list: 245/243

Sval mapping: [1 1 2], 0 -2 1]]

Sval mapping generators: ~3, ~9/7

Gencom mapping: [0 1 1 2], 0 0 -2 1]]

POTE generator: ~9/7 = 440.4881

Vals: b4, b9, b13, b56, b69, b82, b95

Extensions

For full 7-limit extensions, we have sensi, bohpier, escaped, salsa, pycnic, cohemiripple, superthird, magus and leapweek discussed below, as well as father, sidi, godzilla, hedgehog, superpyth, hemiaug, magic, rodan, octacot, shrutar, bamity, and clyde discussed elsewhere.

Tempering out 245/243 alone in the full 7-limit leads to a rank-3 temperament, sensamagic, for which 283edo is the optimal patent val.

Sensi

Sensi tempers out 126/125, 686/675 and 4375/4374 in addition to 245/243, and can be described as the 19&27 temperament. It has as a generator half the size of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as 2.3.5.7.13 sensi (sensation) tempers out 91/90. 22/17, in the middle, is even closer to the generator. 46edo is an excellent sensi tuning, and MOS of size 11, 19 and 27 are available. The name "sensi" is a play on the words "semi-" and "sixth."

Septimal sensi

Subgroup: 2.3.5.7

Comma list: 126/125, 245/243

Mapping: [1 -1 -1 -2], 0 7 9 13]]

Mapping generators: ~2, ~9/7

Wedgie⟨⟨ 7 9 13 -2 1 5 ]]

POTE generator: ~9/7 = 443.383

Minimax tuning:

[[1 0 0 0, [1/13 0 0 7/13, [5/13 0 0 9/13, [0 0 0 1]
Eigenmonzos: 2, 7
[[1 0 0 0, [2/5 14/5 -7/5 0, [4/5 18/5 -9/5 0, [3/5 26/5 -13/5 0]
Eigenmonzos: 2, 9/5

Algebraic generator: The real root of x5 + x4 - 4x2 + x - 1, at 443.3783 cents.

Template:Val list

Badness: 0.025622

Sensation

Subgroup: 2.3.5.7.13

Comma list: 91/90, 126/125, 169/168

Sval mapping: [1 -1 -1 -2 0], 0 7 9 13 10]]

Gencom mapping: [1 -1 -1 -2 0 0], 0 7 9 13 0 10]]

Gencom: [2 9/7; 91/90 126/125 169/168]

POTE generator: ~9/7 = 443.322

Vals: Template:Val list

Sensor

Subgroup: 2.3.5.7.11

Comma list: 126/125, 245/243, 385/384

Mapping: [1 -1 -1 -2 9], 0 7 9 13 -15]]

POTE generator: ~9/7 = 443.294

Vals: Template:Val list

Badness: 0.037942

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 126/125, 169/168, 385/384

Mapping: [1 -1 -1 -2 9 0], 0 7 9 13 -15 10]]

POTE generator: ~9/7 = 443.321

Vals: Template:Val list

Badness: 0.025575

Sensis

Subgroup: 2.3.5.7.11

Comma list: 56/55, 100/99, 245/243

Mapping: [1 -1 -1 -2 2], 0 7 9 13 4]]

POTE generator: ~9/7 = 443.962

Vals: Template:Val list

Badness: 0.028680

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 78/77, 91/90, 100/99

Mapping: [1 -1 -1 -2 2 0], 0 7 9 13 4 10]]

POTE generator: ~9/7 = 443.945

Vals: Template:Val list

Badness: 0.020017

Sensus

Subgroup: 2.3.5.7.11

Comma list: 126/125, 176/175, 245/243

Mapping: [1 -1 -1 -2 -8], 0 7 9 13 31]]

POTE generator: ~9/7 = 443.626

Vals: Template:Val list

Badness: 0.029486

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 126/125, 169/168, 352/351

Mapping: [1 -1 -1 -2 -8 0], 0 7 9 13 31 10]]

POTE generator: ~9/7 = 443.559

Vals: Template:Val list

Badness: 0.020789

Sensa

Subgroup: 2.3.5.7.11

Comma list: 55/54, 77/75, 99/98

Mapping: [1 -1 -1 -2 -1], 0 7 9 13 12]]

POTE generator: ~9/7 = 443.518

Vals: Template:Val list

Badness: 0.036835

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 66/65, 77/75, 143/140

Mapping: [1 -1 -1 -2 -1 0], 0 7 9 13 12 11]]

POTE generator: ~9/7 = 443.506

Vals: Template:Val list

Badness: 0.023258

Hemisensi

Subgroup: 2.3.5.7.11

Comma list: 126/125, 243/242, 245/242

Mapping: [1 -1 -1 -2 -3], 0 14 18 26 35]]

POTE generator: ~25/22 = 221.605

Vals: Template:Val list

Badness: 0.048714

Bohpier

Bohpier is named after its interesting relationship with the non-octave Bohlen-Pierce equal temperament.

Subgroup: 2.3.5

Comma list: 1220703125/1162261467

Mapping: [1 0 0], 0 13 19]]

POTE generator: ~27/25 = 146.476

Template:Val list

Badness: 0.860534

7-limit

Subgroup: 2.3.5.7

Comma list: 245/243, 3125/3087

Mapping: [1 0 0 0], 0 13 19 23]]

Wedgie⟨⟨ 13 19 23 0 0 0 ]]

POTE generator: ~27/25 = 146.474

Template:Val list

Badness: 0.068237

11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 245/243, 1344/1331

POTE generator: ~12/11 = 146.545

Mapping: [1 0 0 0 2], 0 13 19 23 12]]

Vals: Template:Val list

Badness: 0.033949

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 144/143, 196/195, 275/273

POTE generator: ~12/11 = 146.603

Mapping: [1 0 0 0 2 2], 0 13 19 23 12 14]]

Vals: Template:Val list

Badness: 0.024864

Music

by Chris Vaisvil:

Escaped

This temperament is also known as "sensa" because it tempers out 245/243, 352/351, and 385/384 as a sensamagic temperament. Not to be confused with 19e&27 temperament (sensi extension).

Subgroup: 2.3.5.7

Comma list: 245/243, 65625/65536

Mapping: [1 2 2 4], 0 -9 7 -26]]

Wedgie⟨⟨ 9 -7 26 -32 16 80 ]]

POTE generator: ~28/27 = 55.122

Template:Val list

Badness: 0.088746

11-limit

Subgroup: 2.3.5.7.11

Comma list: 245/243, 385/384, 4000/3993

Mapping: [1 2 2 4 3], 0 -9 7 -26 10]]

POTE generator: ~28/27 = 55.126

Vals: Template:Val list

Badness: 0.035844

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 245/243, 352/351, 385/384, 625/624

Mapping: [1 2 2 4 3 2], 0 -9 7 -26 10 37]]

POTE generator: ~28/27 = 55.138

Vals: Template:Val list

Badness: 0.031366

Salsa

Subgroup: 2.3.5.7

Comma list: 245/243, 32805/32768

Mapping: [1 1 7 -1], 0 2 -16 13]]

Wedgie⟨⟨ 2 -16 13 -30 15 75 ]]

POTE generator: ~128/105 = 351.049

Template:Val list

Badness: 0.080152

11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 245/242, 385/384

Mapping: [1 1 7 -1 2], 0 2 -16 13 5]]

POTE generator: ~11/9 = 351.014

Vals: Template:Val list

Badness: 0.039444

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 105/104, 144/143, 243/242, 245/242

Mapping: [1 1 7 -1 2 4], 0 2 -16 13 5 -1]]

POTE generator: ~11/9 = 351.025

Vals: Template:Val list

Badness: 0.030793

Pycnic

The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has MOS of size 9, 11, 13, 15, 17... which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.

Subgroup: 2.3.5.7

Comma list: 245/243, 525/512

Mapping: [1 3 -1 8], 0 -3 7 -11]]

Wedgie⟨⟨ 3 -7 11 -18 9 45 ]]

POTE generator: ~45/32 = 567.720

Template:Val list

Badness: 0.073735

Cohemiripple

Subgroup: 2.3.5.7

Comma list: 245/243, 1323/1250

Mapping: [1 -3 -5 -5], 0 10 16 17]]

Wedgie⟨⟨ 10 16 17 2 -1 -5 ]]

POTE generator: ~7/5 = 549.944

Template:Val list

Badness: 0.190208

11-limit

Subgroup: 2.3.5.7.11

Comma list: 77/75, 243/242, 245/242

Mapping: [1 -3 -5 -5 -8], 0 10 16 17 25]]

POTE generator: ~7/5 = 549.945

Vals: Template:Val list

Badness: 0.082716

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 66/65, 77/75, 147/143, 243/242

Mapping: [1 -3 -5 -5 -8 -5], 0 -10 -16 -17 -25 -19]]

POTE generator: ~7/5 = 549.958

Vals: Template:Val list

Badness: 0.049933

Superthird

Subgroup: 2.3.5.7

Comma list: 245/243, 78125/76832

Mapping: [1 -5 -5 -10], 0 18 20 35]]

Wedgie⟨⟨ 18 20 35 -10 5 25 ]]

POTE generator: ~9/7 = 439.076

Template:Val list

Badness: 0.139379

11-limit

Subgroup: 2.3.5.7.11

Comma list: 100/99, 245/243, 78125/76832

Mapping: [1 -5 -5 -10 2], 0 18 20 35 4]]

POTE generator: ~9/7 = 439.152

Vals: Template:Val list

Badness: 0.070917

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 100/99, 144/143, 196/195, 1375/1352

Mapping: [1 -5 -5 -10 2 -8], 0 18 20 35 4 32]]

POTE generator: ~9/7 = 439.119

Vals: Template:Val list

Badness: 0.052835

Magus

Subgroup: 2.3.5

Comma list: 50331648/48828125

Mapping: [1 -2 2], 0 11 1]]

POTE generator: ~5/4 = 391.225

Template:Val list

Badness: 0.360162

7-limit

Subgroup: 2.3.5.7

Comma list: 245/243, 28672/28125

Mapping: [1 -2 2 -6], 0 11 1 27]]

Wedgie⟨⟨ 11 1 27 -24 12 60 ]]

POTE generator: ~5/4 = 391.465

Template:Val list

Badness: 0.1084

11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 245/243, 1331/1323

Mapping: [1 -2 2 -6 -6], 0 11 1 27 29]]

POTE generator: ~5/4 = 391.503

Vals: Template:Val list

Badness: 0.045108

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 91/90, 176/175, 245/243, 1331/1323

Mapping: [1 -2 2 -6 -6 5], 0 11 1 27 29 -4]]

POTE generator: ~5/4 = 391.366

Vals: Template:Val list

Badness: 0.043024

Leapweek

Subgroup: 2.3.5.7

Comma list: 245/243, 2097152/2066715

Mapping: [1 1 17 -6], 0 1 -25 15]]

POTE generator: ~3/2 = 704.536

Template:Val list

Badness: 0.140577

11-limit

Subgroup: 2.3.5.7.11

Comma list: 245/243, 385/384, 1331/1323

Mapping: [1 1 17 -6 -3], 0 1 -25 15 11]]

POTE generator: ~3/2 = 704.554

Vals: Template:Val list

Badness: 0.050679

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 245/243, 352/351, 364/363

Mapping: [1 1 17 -6 -3 -1], 0 1 -25 15 11 8]]

POTE generator: ~3/2 = 704.571

Vals: Template:Val list

Badness: 0.032727

Semiwolf

Subgroup: 3/2.7/4.5/2

Comma list: 245/243

Mapping: [1 1 3], 0 1 -2]]

POL2 generator: ~7/6 = 262.1728

Vals: Template:Val list

Semilupine

Subgroup: 3/2.7/4.5/2.11/4

Comma list: 245/243, 100/99

Mapping: [1 1 3 4], 0 1 -2 -4]]

POL2 generator: ~7/6 = 264.3771

Vals: Template:Val list

Hemilycan

Subgroup: 3/2.7/4.5/2.11/4

Comma list: 245/243, 441/440

Mapping: [1 1 3 1], 0 1 -2 4]]

POL2 generator: ~7/6 = 261.5939

Vals: Template:Val list