87edo: Difference between revisions
m →13-limit detempering of 87et: made todo more prominent |
Move the detempering table somewhere else and replace w/ a normal one |
||
Line 4: | Line 4: | ||
87et is a particularly good tuning for [[Gamelismic clan #Rodan|rodan temperament]]. The 8/7 generator of 17\87 is a remarkable 0.00062 cents sharper than the 13-limit [[POTE tuning|POTE]] generator and is close to the [[11-limit]] POTE generator also. Also, the 32\87 generator for [[Kleismic family #Clyde|clyde temperament]] is 0.04455 cents sharp of the 7-limit POTE generator. | 87et is a particularly good tuning for [[Gamelismic clan #Rodan|rodan temperament]]. The 8/7 generator of 17\87 is a remarkable 0.00062 cents sharper than the 13-limit [[POTE tuning|POTE]] generator and is close to the [[11-limit]] POTE generator also. Also, the 32\87 generator for [[Kleismic family #Clyde|clyde temperament]] is 0.04455 cents sharp of the 7-limit POTE generator. | ||
== Intervals == | |||
{| class="wikitable center-all right-2 left-3" | |||
! # | |||
! Cents | |||
! Approximated Ratios | |||
! [[Ups and Downs Notation]] | |||
|- | |||
|0 | |||
|0.000 | |||
|1/1 | |||
|D | |||
|- | |||
|1 | |||
|13.793 | |||
|126/125, 100/99, 91/90 | |||
|^D | |||
|- | |||
|2 | |||
|27.586 | |||
|81/80, 64/63, 49/48, 55/54, 65/64 | |||
|^^D | |||
|- | |||
|3 | |||
|41.379 | |||
|50/49, 45/44 | |||
|^<sup>3</sup>D/v<sup>3</sup>Eb | |||
|- | |||
|4 | |||
|55.172 | |||
|28/27, 36/35, 33/32 | |||
|vvEb | |||
|- | |||
|5 | |||
|68.966 | |||
|25/24, 27/26, 26/25 | |||
|vEb | |||
|- | |||
|6 | |||
|82.759 | |||
|21/20, 22/21 | |||
|Eb | |||
|- | |||
|7 | |||
|96.552 | |||
|35/33 | |||
|^Eb | |||
|- | |||
|8 | |||
|110.345 | |||
|16/15 | |||
|^^Eb | |||
|- | |||
|9 | |||
|124.138 | |||
|15/14, 14/13 | |||
|^<sup>3</sup>Eb | |||
|- | |||
|10 | |||
|137.931 | |||
|13/12 | |||
|^<sup>4</sup>Eb | |||
|- | |||
|11 | |||
|151.724 | |||
|12/11 | |||
|v<sup>4</sup>E | |||
|- | |||
|12 | |||
|165.517 | |||
|11/10 | |||
|v<sup>3</sup>E | |||
|- | |||
|13 | |||
|179.310 | |||
|10/9 | |||
|vvE | |||
|- | |||
|14 | |||
|193.103 | |||
|28/25 | |||
|vE | |||
|- | |||
|15 | |||
|206.897 | |||
|9/8 | |||
|E | |||
|- | |||
|16 | |||
|220.690 | |||
|25/22 | |||
|^E | |||
|- | |||
|17 | |||
|234.483 | |||
|8/7 | |||
|^^E | |||
|- | |||
|18 | |||
|248.276 | |||
|15/13 | |||
|^<sup>3</sup>E/v<sup>3</sup>F | |||
|- | |||
|19 | |||
|262.089 | |||
|7/6 | |||
|vvF | |||
|- | |||
|20 | |||
|275.862 | |||
|75/64 | |||
|vF | |||
|- | |||
|21 | |||
|289.655 | |||
|33/28, 13/11 | |||
|F | |||
|- | |||
|22 | |||
|303.448 | |||
|25/21 | |||
|^F | |||
|- | |||
|23 | |||
|317.241 | |||
|6/5 | |||
|^^F | |||
|- | |||
|24 | |||
|331.034 | |||
|63/52 | |||
|^<sup>3</sup>F | |||
|- | |||
|25 | |||
|344.828 | |||
|11/9, 39/32 | |||
|^<sup>4</sup>F | |||
|- | |||
|26 | |||
|358.621 | |||
|27/22, 16/13 | |||
|v<sup>4</sup>F# | |||
|- | |||
|27 | |||
|372.414 | |||
|26/21 | |||
|v<sup>3</sup>F# | |||
|- | |||
|28 | |||
|386.207 | |||
|5/4 | |||
|vvF# | |||
|- | |||
|29 | |||
|400.000 | |||
|63/50, 44/35 | |||
|vF# | |||
|- | |||
|30 | |||
|413.793 | |||
|14/11, 33/26 | |||
|F# | |||
|- | |||
|31 | |||
|427.586 | |||
|32/25 | |||
|^F# | |||
|- | |||
|32 | |||
|441.379 | |||
|9/7 | |||
|^^F# | |||
|- | |||
|33 | |||
|455.172 | |||
|13/10 | |||
|^<sup>3</sup>F#/v<sup>3</sup>G | |||
|- | |||
|34 | |||
|468.966 | |||
|21/16 | |||
|vvG | |||
|- | |||
|35 | |||
|482.759 | |||
|33/25 | |||
|vG | |||
|- | |||
|36 | |||
|496.552 | |||
|4/3 | |||
|G | |||
|- | |||
|37 | |||
|510.345 | |||
|75/56 | |||
|^G | |||
|- | |||
|38 | |||
|524.138 | |||
|27/20 | |||
|^^G | |||
|- | |||
|39 | |||
|537.931 | |||
|15/11 | |||
|^<sup>3</sup>G | |||
|- | |||
|40 | |||
|551.724 | |||
|11/8 | |||
|^<sup>4</sup>G | |||
|- | |||
|41 | |||
|565.517 | |||
|18/13 | |||
|v<sup>4</sup>G#, vAb | |||
|- | |||
|42 | |||
|579.310 | |||
|7/5, 39/28 | |||
|v<sup>3</sup>G#, Ab | |||
|- | |||
|43 | |||
|593.103 | |||
|45/32 | |||
|vvG#, ^Ab | |||
|} | |||
== Rank two temperaments == | == Rank two temperaments == | ||
Line 83: | Line 311: | ||
== 13-limit detempering of 87et == | == 13-limit detempering of 87et == | ||
See [[Detempering | ''See also: [[Detempering]]'' | ||
''Main article: [[87edo/13-limit detempering]]'' | |||
== Music == | == Music == | ||
Line 533: | Line 319: | ||
* [http://www.archive.org/details/Pianodactyl Pianodactyl] [http://www.archive.org/download/Pianodactyl/pianodactyl.mp3 play] by [[Gene Ward Smith]] | * [http://www.archive.org/details/Pianodactyl Pianodactyl] [http://www.archive.org/download/Pianodactyl/pianodactyl.mp3 play] by [[Gene Ward Smith]] | ||
[[Category:theory]] | |||
[[Category:edo]] | |||
[[Category:87edo]] | [[Category:87edo]] | ||
[[Category:listen]] | |||
[[Category:clyde]] | [[Category:clyde]] | ||
[[Category:countercata]] | [[Category:countercata]] | ||
[[Category:hemithirds]] | [[Category:hemithirds]] | ||
[[Category:mystery]] | [[Category:mystery]] | ||
[[Category:rodan]] | [[Category:rodan]] | ||
[[Category:tritikleismic]] | [[Category:tritikleismic]] |
Revision as of 14:58, 12 June 2020
The 87 equal temperament, often abbreviated 87-tET, 87-EDO, or 87-ET, is the scale derived by dividing the octave into 87 equally-sized steps, where each step represents a frequency ratio of 13.79 cents. It is solid as both a 13-limit (or 15 odd limit) and as a 5-limit system, and of course does well enough in any limit in between. It represents the 13-limit tonality diamond both uniquely and consistently, and is the smallest equal temperament to do so.
87et tempers out 196/195, 325/324, 352/351, 364/363, 385/384, 441/440, 625/624, 676/675, and 1001/1000 as well as the 29-comma, <46 -29|, the misty comma, <26 -12 -3|, the kleisma, 15625/15552, 245/243, 1029/1024, 3136/3125, and 5120/5103.
87et is a particularly good tuning for rodan temperament. The 8/7 generator of 17\87 is a remarkable 0.00062 cents sharper than the 13-limit POTE generator and is close to the 11-limit POTE generator also. Also, the 32\87 generator for clyde temperament is 0.04455 cents sharp of the 7-limit POTE generator.
Intervals
# | Cents | Approximated Ratios | Ups and Downs Notation |
---|---|---|---|
0 | 0.000 | 1/1 | D |
1 | 13.793 | 126/125, 100/99, 91/90 | ^D |
2 | 27.586 | 81/80, 64/63, 49/48, 55/54, 65/64 | ^^D |
3 | 41.379 | 50/49, 45/44 | ^3D/v3Eb |
4 | 55.172 | 28/27, 36/35, 33/32 | vvEb |
5 | 68.966 | 25/24, 27/26, 26/25 | vEb |
6 | 82.759 | 21/20, 22/21 | Eb |
7 | 96.552 | 35/33 | ^Eb |
8 | 110.345 | 16/15 | ^^Eb |
9 | 124.138 | 15/14, 14/13 | ^3Eb |
10 | 137.931 | 13/12 | ^4Eb |
11 | 151.724 | 12/11 | v4E |
12 | 165.517 | 11/10 | v3E |
13 | 179.310 | 10/9 | vvE |
14 | 193.103 | 28/25 | vE |
15 | 206.897 | 9/8 | E |
16 | 220.690 | 25/22 | ^E |
17 | 234.483 | 8/7 | ^^E |
18 | 248.276 | 15/13 | ^3E/v3F |
19 | 262.089 | 7/6 | vvF |
20 | 275.862 | 75/64 | vF |
21 | 289.655 | 33/28, 13/11 | F |
22 | 303.448 | 25/21 | ^F |
23 | 317.241 | 6/5 | ^^F |
24 | 331.034 | 63/52 | ^3F |
25 | 344.828 | 11/9, 39/32 | ^4F |
26 | 358.621 | 27/22, 16/13 | v4F# |
27 | 372.414 | 26/21 | v3F# |
28 | 386.207 | 5/4 | vvF# |
29 | 400.000 | 63/50, 44/35 | vF# |
30 | 413.793 | 14/11, 33/26 | F# |
31 | 427.586 | 32/25 | ^F# |
32 | 441.379 | 9/7 | ^^F# |
33 | 455.172 | 13/10 | ^3F#/v3G |
34 | 468.966 | 21/16 | vvG |
35 | 482.759 | 33/25 | vG |
36 | 496.552 | 4/3 | G |
37 | 510.345 | 75/56 | ^G |
38 | 524.138 | 27/20 | ^^G |
39 | 537.931 | 15/11 | ^3G |
40 | 551.724 | 11/8 | ^4G |
41 | 565.517 | 18/13 | v4G#, vAb |
42 | 579.310 | 7/5, 39/28 | v3G#, Ab |
43 | 593.103 | 45/32 | vvG#, ^Ab |
Rank two temperaments
Periods per octave |
Generator | Cents | Associated ratio |
Temperament |
---|---|---|---|---|
1 | 4\87 | 55.172 | 33/32 | Sensa |
1 | 10\87 | 137.931 | 13/12 | Quartemka |
1 | 14\87 | 193.103 | 28/25 | Luna / Hemithirds |
1 | 17\87 | 234.483 | 8/7 | Rodan |
1 | 23\87 | 317.241 | 6/5 | Hanson / Countercata / Metakleismic |
1 | 32\87 | 441.379 | 9/7 | Clyde |
1 | 38\87 | 524.138 | 65/48 | Widefourth |
1 | 40\87 | 551.724 | 11/8 | Emkay |
3 | 23\87 | 317.241 | 6/5 | Tritikleismic |
29 | 28\87 | 386.207 | 5/4 | Mystery |
87 can serve as a MOS in these:
13-limit detempering of 87et
See also: Detempering
Main article: 87edo/13-limit detempering