Semaphoresmic family: Difference between revisions
m Text replacement - "Category:Temperament families" to "Category:Temperament families Category:Pages with mostly numerical content" |
+ WE tunings |
||
Line 1: | Line 1: | ||
{{Technical data page}} | {{Technical data page}} | ||
The '''semaphoresmic family''' of [[rank-3 temperament|rank-3]] [[regular temperament|temperaments]] [[tempering out|tempers out]] [[49/48]] in the full [[7-limit]], and thereby identifies the septimal minor third, [[7/6]], and the septimal whole tone, [[8/7]]. It also splits the fourth into two of these intervals; hence the name, which sounds like "semi-fourth". Related to this is the 2.3.7- | The '''semaphoresmic family''' of [[rank-3 temperament|rank-3]] [[regular temperament|temperaments]] [[tempering out|tempers out]] [[49/48]] in the full [[7-limit]], and thereby identifies the septimal minor third, [[7/6]], and the septimal whole tone, [[8/7]]. It also splits the fourth into two of these intervals; hence the name, which sounds like "semi-fourth". Related to this is the 2.3.7-subgroup {49/48} temperament [[Semaphoresmic clan #Semaphore|semaphore]], and the 7-limit {49/48, 81/80} temperament [[Semaphoresmic clan #Godzilla|godzilla]]. | ||
== Semiphore == | == Semiphore == | ||
Line 18: | Line 18: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1202.8324, ~7/4 = 951.8567, ~5/4 = 386.2644 | ||
: [[error map]]: {{val| | : [[error map]]: {{val| +2.832 +1.758 -0.049 -11.304 }} | ||
* [[CWE]]: ~2 = 1200.0000, ~7/4 = 950.6890, ~5/4 = 382.3522 | * [[CWE]]: ~2 = 1200.0000, ~7/4 = 950.6890, ~5/4 = 382.3522 | ||
: error map: {{val| 0.000 -0.577 -3.962 -18.137 }} | : error map: {{val| 0.000 -0.577 -3.962 -18.137 }} | ||
<!-- * [[CTE]]: ~2 = 1200.0000, ~7/4 = 952.2948, ~5/4 = 386.3137 | |||
: [[error map]]: {{val| 0.000 +2.635 0.000 -16.531 }} --> | |||
<!-- * [[POTE]]: ~2 = 1200.0000, ~7/4 = 949.6154, ~5/4 = 379.7035 | <!-- * [[POTE]]: ~2 = 1200.0000, ~7/4 = 949.6154, ~5/4 = 379.7035 | ||
: error map: {{val| 0.000 -2.724 -6.610 -19.211 }} --> | : error map: {{val| 0.000 -2.724 -6.610 -19.211 }} --> | ||
Line 37: | Line 39: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1200.0412, ~7/4 = 951.7616, ~5/4 = 390.7445 | ||
: [[error map]]: {{val| 0. | : [[error map]]: {{val| +0.041 +1.568 +4.431 -16.982 +9.905 }} | ||
* [[CWE]]: ~2 = 1200.0000, ~7/4 = 951.7409, ~5/4 = 390.6582 | * [[CWE]]: ~2 = 1200.0000, ~7/4 = 951.7409, ~5/4 = 390.6582 | ||
: error map: {{val| 0.000 +1.527 +4.344 -17.085 +9.765 }} | : error map: {{val| 0.000 +1.527 +4.344 -17.085 +9.765 }} | ||
<!-- * [[CTE]]: ~2 = 1200.0000, ~7/4 = 951.8194, ~5/4 = 390.7202 | |||
: [[error map]]: {{val| 0.000 +1.684 +4.407 -17.007 +9.781 }} --> | |||
<!-- * [[POTE]]: ~2 = 1200.0000, ~7/4 = 951.7290, ~5/4 = 390.6487 | <!-- * [[POTE]]: ~2 = 1200.0000, ~7/4 = 951.7290, ~5/4 = 390.6487 | ||
: error map: {{val| 0.000 +1.503 +4.335 -17.097 +9.762 }} --> | : error map: {{val| 0.000 +1.503 +4.335 -17.097 +9.762 }} --> | ||
Line 56: | Line 60: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1200.0790, ~7/4 = 951.3067, ~5/4 = 389.7793 | ||
* CWE: ~2 = 1200.0000, ~7/4 = 951.2662, ~5/4 = 389.6120 | * CWE: ~2 = 1200.0000, ~7/4 = 951.2662, ~5/4 = 389.6120 | ||
<!-- * CTE: ~2 = 1200.0000, ~7/4 = 951.3729, ~5/4 = 389.6907 --> | |||
<!-- * POTE: ~2 = 1200.0000, ~7/4 = 951.2441, ~5/4 = 389.5957 --> | <!-- * POTE: ~2 = 1200.0000, ~7/4 = 951.2441, ~5/4 = 389.5957 --> | ||
Line 72: | Line 77: | ||
[[Optimal tuning]]s: | [[Optimal tuning]]s: | ||
* [[ | * [[WE]]: ~2 = 1203.4810, ~15/14 = 125.9724, ~11/8 = 540.7985 | ||
: [[error map]]: {{val| | : [[error map]]: {{val| +3.481 +1.118 -1.435 -10.328 -0.076 }} | ||
* [[CWE]]: ~2 = 1200.0000, ~15/14 = 125.4347, ~11/8 = 541.8688 | * [[CWE]]: ~2 = 1200.0000, ~15/14 = 125.4347, ~11/8 = 541.8688 | ||
: error map: {{val| 0.000 -3.694 -10.009 -19.695 -9.449 }} | : error map: {{val| 0.000 -3.694 -10.009 -19.695 -9.449 }} | ||
<!-- * [[CTE]]: ~2 = 1200.0000, ~15/14 = 124.8134, ~11/8 = 551.3179 | |||
: [[error map]]: {{val| 0.000 -1.209 -11.874 -18.453 0.000 }} --> | |||
<!-- * [[POTE]]: ~2 = 1200.0000, ~15/14 = 125.6080, ~11/8 = 539.2342 | <!-- * [[POTE]]: ~2 = 1200.0000, ~15/14 = 125.6080, ~11/8 = 539.2342 | ||
: error map: {{val| 0.000 -4.387 -9.490 -20.042 -12.084 }} --> | : error map: {{val| 0.000 -4.387 -9.490 -20.042 -12.084 }} --> | ||
Line 91: | Line 98: | ||
Optimal tunings: | Optimal tunings: | ||
* | * WE: ~2 = 1203.6981, ~14/13 = 125.9545, ~11/8 = 540.1440 | ||
* CWE: ~2 = 1200.0000, ~14/13 = 125.3543, ~11/8 = 540.9490 | * CWE: ~2 = 1200.0000, ~14/13 = 125.3543, ~11/8 = 540.9490 | ||
<!-- * CTE: ~2 = 1200.0000, ~14/13 = 124.4571, ~11/8 = 551.3179 --> | |||
<!-- * POTE: ~2 = 1200.0000, ~14/13 = 125.5675, ~11/8 = 538.4845 --> | <!-- * POTE: ~2 = 1200.0000, ~14/13 = 125.5675, ~11/8 = 538.4845 --> | ||
Revision as of 09:35, 14 July 2025
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The semaphoresmic family of rank-3 temperaments tempers out 49/48 in the full 7-limit, and thereby identifies the septimal minor third, 7/6, and the septimal whole tone, 8/7. It also splits the fourth into two of these intervals; hence the name, which sounds like "semi-fourth". Related to this is the 2.3.7-subgroup {49/48} temperament semaphore, and the 7-limit {49/48, 81/80} temperament godzilla.
Semiphore
This temperament is also known as semaphoresmic.
Subgroup: 2.3.5.7
Comma list: 49/48
Mapping: [⟨1 0 2 2], ⟨0 2 0 1], ⟨0 0 1 0]]
- mapping generators: ~2, ~7/4, ~5
Lattice basis:
- 7/6 length = 0.7627, 5/4 length = 2.322
- Angle (7/6, 5/4) = 90 degrees
- WE: ~2 = 1202.8324, ~7/4 = 951.8567, ~5/4 = 386.2644
- error map: ⟨+2.832 +1.758 -0.049 -11.304]
- CWE: ~2 = 1200.0000, ~7/4 = 950.6890, ~5/4 = 382.3522
- error map: ⟨0.000 -0.577 -3.962 -18.137]
Optimal ET sequence: 4, 5, 9, 10, 14c, 15, 19
Badness (Sintel): 0.510
Selenium
Subgroup: 2.3.5.7.11
Comma list: 49/48, 56/55
Mapping: [⟨1 0 2 2 5], ⟨0 2 0 1 1], ⟨0 0 1 0 -1]]
- WE: ~2 = 1200.0412, ~7/4 = 951.7616, ~5/4 = 390.7445
- error map: ⟨+0.041 +1.568 +4.431 -16.982 +9.905]
- CWE: ~2 = 1200.0000, ~7/4 = 951.7409, ~5/4 = 390.6582
- error map: ⟨0.000 +1.527 +4.344 -17.085 +9.765]
Optimal ET sequence: 4, 5, 9, 10, 15, 19, 24, 34
Badness (Sintel): 0.800
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 56/55, 91/90
Mapping: [⟨1 0 2 2 5 -1], ⟨0 2 0 1 1 3], ⟨0 0 1 0 -1 1]]
Optimal tunings:
- WE: ~2 = 1200.0790, ~7/4 = 951.3067, ~5/4 = 389.7793
- CWE: ~2 = 1200.0000, ~7/4 = 951.2662, ~5/4 = 389.6120
Optimal ET sequence: 5, 9, 10, 15, 19, 24, 34
Badness (Sintel): 0.736
Negric
Subgroup: 2.3.5.7.11
Comma list: 49/48, 225/224
Mapping: [⟨1 2 2 3 0], ⟨0 -4 3 -2 0], ⟨0 0 0 0 1]]
- WE: ~2 = 1203.4810, ~15/14 = 125.9724, ~11/8 = 540.7985
- error map: ⟨+3.481 +1.118 -1.435 -10.328 -0.076]
- CWE: ~2 = 1200.0000, ~15/14 = 125.4347, ~11/8 = 541.8688
- error map: ⟨0.000 -3.694 -10.009 -19.695 -9.449]
Optimal ET sequence: 9, 10, 19, 29, 38d, 67cdde, 105cdddee
Badness (Sintel): 1.31
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 65/64, 91/90
Mapping: [⟨1 2 2 3 0 4], ⟨0 -4 3 -2 0 -3], ⟨0 0 0 0 1 0]]
Optimal tunings:
- WE: ~2 = 1203.6981, ~14/13 = 125.9545, ~11/8 = 540.1440
- CWE: ~2 = 1200.0000, ~14/13 = 125.3543, ~11/8 = 540.9490
Optimal ET sequence: 9, 10, 19, 29, 38df, 67cddef, 105cdddeefff
Badness (Sintel): 0.755