11edf: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) No edit summary |
Cleanup |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | {{ED intro}} | ||
== Theory == | |||
11edf corresponds to 18.8046…[[edo]]. It is similar to [[19edo]], and nearly identical to [[Carlos Beta]]. | |||
While the fifth is just, the fourth is very sharp and significantly less accurate than in 19edo. At 510.51{{c}}, it is 12.47{{c}} sharper than just and 3.7{{c}} flat of that of [[7edo]]. | While the fifth is just, the fourth is very sharp and significantly less accurate than in 19edo. At 510.51{{c}}, it is 12.47{{c}} sharper than just and 3.7{{c}} flat of that of [[7edo]]. | ||
11edf represents the upper bound of the [[phoenix]] tuning range. | 11edf represents the upper bound of the [[phoenix]] tuning range. It benefits from all the desirable properties of phoenix tuning systems. | ||
== Harmonics == | === Harmonics === | ||
{{Harmonics in equal|11|3|2| | {{Harmonics in equal|11|3|2|intervals=integer|columns=11}} | ||
{{Harmonics in equal|11|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 11edf (continued)}} | |||
== Intervals == | == Intervals == | ||
{| class="wikitable" | {| class="wikitable center-1 right-2" | ||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Approximate ratios | ||
|- | |- | ||
| | | 0 | ||
| | | 0.0 | ||
| [[1/1]] | |||
|- | |- | ||
| 1 | | 1 | ||
| 63. | | 63.8 | ||
| | | [[21/20]], [[25/24]], [[27/26]], [[28/27]] | ||
|- | |- | ||
| 2 | | 2 | ||
| 127. | | 127.6 | ||
| [[14/13]] | | [[13/12]], [[14/13]], [[15/14]], [[16/15]] | ||
|- | |- | ||
| 3 | | 3 | ||
| 191. | | 191.4 | ||
| [[9/8]], [[10/9]] | |||
| | |||
|- | |- | ||
| 4 | | 4 | ||
| 255. | | 255.3 | ||
| [[7/6]], ''[[8/7]]'' | |||
| | |||
|- | |- | ||
| 5 | | 5 | ||
| 319. | | 319.1 | ||
| 6/5 | | [[6/5]] | ||
|- | |- | ||
| 6 | | 6 | ||
| 382. | | 382.9 | ||
| 5/4 | | [[5/4]] | ||
|- | |- | ||
| 7 | | 7 | ||
| 446. | | 446.7 | ||
| [[9/7]] | |||
| | |||
|- | |- | ||
| 8 | | 8 | ||
| 510. | | 510.5 | ||
| [[4/3]] | |||
| | |||
|- | |- | ||
| 9 | | 9 | ||
| 574. | | 574.3 | ||
| | | [[7/5]] | ||
|- | |- | ||
| 10 | | 10 | ||
| 638. | | 638.1 | ||
| | | [[13/9]] | ||
|- | |- | ||
| 11 | | 11 | ||
| | | 702.0 | ||
| | | [[3/2]] | ||
|- | |- | ||
| 12 | | 12 | ||
| 765. | | 765.8 | ||
| 14/9 | | [[14/9]] | ||
|- | |- | ||
| 13 | | 13 | ||
| 828. | | 828.6 | ||
| 21/13 | | [[8/5]], [[13/8]], [[21/13]] | ||
|- | |- | ||
| 14 | | 14 | ||
| 893. | | 893.4 | ||
| [[5/3]] | |||
| | |||
|- | |- | ||
| 15 | | 15 | ||
| 956. | | 956.2 | ||
| [[7/4]] | |||
| | |||
|- | |- | ||
| 16 | | 16 | ||
| 1020. | | 1020.0 | ||
| 9/5 | | [[9/5]] | ||
|- | |- | ||
| 17 | | 17 | ||
| 1084. | | 1084.8 | ||
| 15/8 | | [[15/8]] | ||
|- | |- | ||
| 18 | | 18 | ||
| 1148. | | 1148.7 | ||
| [[27/14]], [[35/18]] | |||
| | |||
|- | |- | ||
| 19 | | 19 | ||
| 1211. | | 1211.5 | ||
| [[2/1]] | |||
| | |||
|- | |- | ||
| 20 | | 20 | ||
| 1276. | | 1276.3 | ||
| | | [[21/10]], [[25/12]], [[27/13]] | ||
|- | |- | ||
| 21 | | 21 | ||
| 1340. | | 1340.1 | ||
| 13/6 | | [[13/6]] | ||
|- | |- | ||
| 22 | | 22 | ||
| 1403. | | 1403.9 | ||
| | | [[9/4]] | ||
|} | |} | ||
Revision as of 12:56, 30 March 2025
← 10edf | 11edf | 12edf → |
11 equal divisions of the perfect fifth (abbreviated 11edf or 11ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 11 equal parts of about 63.8 ¢ each. Each step represents a frequency ratio of (3/2)1/11, or the 11th root of 3/2.
Theory
11edf corresponds to 18.8046…edo. It is similar to 19edo, and nearly identical to Carlos Beta.
While the fifth is just, the fourth is very sharp and significantly less accurate than in 19edo. At 510.51 ¢, it is 12.47 ¢ sharper than just and 3.7 ¢ flat of that of 7edo.
11edf represents the upper bound of the phoenix tuning range. It benefits from all the desirable properties of phoenix tuning systems.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +12.5 | +12.5 | +24.9 | +21.5 | +24.9 | +13.3 | -26.4 | +24.9 | -29.8 | -3.4 | -26.4 |
Relative (%) | +19.5 | +19.5 | +39.1 | +33.7 | +39.1 | +20.9 | -41.4 | +39.1 | -46.8 | -5.3 | -41.4 | |
Steps (reduced) |
19 (8) |
30 (8) |
38 (5) |
44 (0) |
49 (5) |
53 (9) |
56 (1) |
60 (5) |
62 (7) |
65 (10) |
67 (1) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +26.5 | +25.8 | -29.8 | -13.9 | +8.7 | -26.4 | +7.6 | -17.4 | +25.8 | +9.1 | -4.1 | -13.9 |
Relative (%) | +41.5 | +40.4 | -46.8 | -21.8 | +13.7 | -41.4 | +11.9 | -27.2 | +40.4 | +14.2 | -6.4 | -21.8 | |
Steps (reduced) |
70 (4) |
72 (6) |
73 (7) |
75 (9) |
77 (0) |
78 (1) |
80 (3) |
81 (4) |
83 (6) |
84 (7) |
85 (8) |
86 (9) |
Intervals
# | Cents | Approximate ratios |
---|---|---|
0 | 0.0 | 1/1 |
1 | 63.8 | 21/20, 25/24, 27/26, 28/27 |
2 | 127.6 | 13/12, 14/13, 15/14, 16/15 |
3 | 191.4 | 9/8, 10/9 |
4 | 255.3 | 7/6, 8/7 |
5 | 319.1 | 6/5 |
6 | 382.9 | 5/4 |
7 | 446.7 | 9/7 |
8 | 510.5 | 4/3 |
9 | 574.3 | 7/5 |
10 | 638.1 | 13/9 |
11 | 702.0 | 3/2 |
12 | 765.8 | 14/9 |
13 | 828.6 | 8/5, 13/8, 21/13 |
14 | 893.4 | 5/3 |
15 | 956.2 | 7/4 |
16 | 1020.0 | 9/5 |
17 | 1084.8 | 15/8 |
18 | 1148.7 | 27/14, 35/18 |
19 | 1211.5 | 2/1 |
20 | 1276.3 | 21/10, 25/12, 27/13 |
21 | 1340.1 | 13/6 |
22 | 1403.9 | 9/4 |