432edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m -typo
ArrowHead294 (talk | contribs)
mNo edit summary
Line 13: Line 13:
== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br />8ve Stretch (¢)
! colspan="2" | Tuning Error
! colspan="2" | Tuning Error
|-
|-
Line 46: Line 47:
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per 8ve
|-
! Periods<br />per 8ve
! Generator*
! Generator*
! Cents*
! Cents*
! Associated<br>Ratio*
! Associated<br />Ratio*
! Temperaments
! Temperaments
|-
|-
Line 60: Line 62:
|-
|-
| 4
| 4
| 179\432<br>(37\432)
| 179\432<br />(37\432)
| 497.22<br>(102.78)
| 497.22<br />(102.78)
| 4/3
| 4/3
| [[Undim]]
| [[Undim]]
|}
|}
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct
{{orf}}

Revision as of 01:05, 16 November 2024

← 431edo 432edo 433edo →
Prime factorization 24 × 33
Step size 2.77778 ¢ 
Fifth 253\432 (702.778 ¢)
Semitones (A1:m2) 43:31 (119.4 ¢ : 86.11 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

432edo has a reasonable approximation to the 7-limit, where the equal temperament tempers out 5120/5103, 703125/702464, 40353607/40310784, 102760448/102515625, and 283115520/282475249. It supports and provides a good tuning for the 5-limit maja temperament.

Odd harmonics

Approximation of odd harmonics in 432edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.82 -0.20 +0.62 -1.13 -1.32 +1.14 +0.62 +0.60 -0.29 -1.34 -0.50
Relative (%) +29.6 -7.3 +22.3 -40.8 -47.4 +41.0 +22.3 +21.6 -10.5 -48.1 -17.9
Steps
(reduced)
685
(253)
1003
(139)
1213
(349)
1369
(73)
1494
(198)
1599
(303)
1688
(392)
1766
(38)
1835
(107)
1897
(169)
1954
(226)

Subsets and supersets

432 is a highly factorable number, factoring into 24 × 33, so 432edo has subset edos 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 108, 144, and 216.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [685 -432 [432 685]] -0.2596 0.2595 9.34
2.3.5 [41 -20 -4, [-3 -23 17 [432 685 1003]] -0.1440 0.2676 9.63
2.3.5.7 5120/5103, 703125/702464, 6565234375/6530347008 [432 685 1003 1213]] -0.1631 0.2341 8.43

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 163\432 452.78 125/96 Maja
4 179\432
(37\432)
497.22
(102.78)
4/3 Undim

Template:Orf