7L 5s: Difference between revisions
Added intervals heading and intervals template, added MOS mode degrees template, added "proposed names" subheading |
→Proposed Names: clarify that it's cyclic order |
||
Line 9: | Line 9: | ||
{{MOS mode degrees}} | {{MOS mode degrees}} | ||
=== Proposed Names === | === Proposed Names === | ||
Both [[User:Eliora|Eliora]] and [[User:Ganaram inukshuk|Ganaram]] have independently proposed mode names based on names of the months. The former scheme uses mode names from the Gregorian calendar, starting with January assigned to the step pattern LsLsLsLLsLsL, with successive rotations assigned to successive months. The latter scheme is based on month names from the Roman calendar, starting with Mensis Martius as the brightest mode, with successive month names for each mode by descending brightness. | Both [[User:Eliora|Eliora]] and [[User:Ganaram inukshuk|Ganaram]] have independently proposed mode names based on names of the months. The former scheme uses mode names from the Gregorian calendar using cyclic order, starting with January assigned to the step pattern LsLsLsLLsLsL due to positioning of 31-day and 30-day months, with successive rotations assigned to successive months. The latter scheme is based on month names from the Roman calendar, starting with Mensis Martius as the brightest mode, with successive month names for each mode by descending brightness. | ||
{{MOS modes|Table Headers=Mode names<br>(by [[User:Eliora|Eliora]]); Mode names<br>(by [[User:Ganaram inukshuk|Ganaram]])|Table Entries=July; Martian; December; Aprilian; May; Maian; October; Junian; March; Quintillian <br>Julian; August; Sextilian <br>Augustan; January; Septembian; June; Octobian; November; Novembian; April; Decembian; September; Janian; February; Februan}} | {{MOS modes|Table Headers=Mode names<br>(by [[User:Eliora|Eliora]]); Mode names<br>(by [[User:Ganaram inukshuk|Ganaram]])|Table Entries=July; Martian; December; Aprilian; May; Maian; October; Junian; March; Quintillian <br>Julian; August; Sextilian <br>Augustan; January; Septembian; June; Octobian; November; Novembian; April; Decembian; September; Janian; February; Februan}} | ||
Revision as of 14:18, 30 September 2024
↖ 6L 4s | ↑ 7L 4s | 8L 4s ↗ |
← 6L 5s | 7L 5s | 8L 5s → |
↙ 6L 6s | ↓ 7L 6s | 8L 6s ↘ |
┌╥╥┬╥┬╥╥┬╥┬╥┬┐ │║║│║│║║│║│║││ ││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLsLLsLsLL
7L 5s, also called m-chromatic, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 5 small steps, repeating every octave. 7L 5s is a child scale of 5L 2s, expanding it by 5 tones. Generators that produce this scale range from 500 ¢ to 514.3 ¢, or from 685.7 ¢ to 700 ¢. 7L 5s represents the chromatic scale of meantone, or meantone chromatic scale. Such scales are characterized by having a small step (diatonic semitone) that is larger than the chroma (chromatic semitone), the reverse of 5L 7s.
Meantone is the only notable harmonic entropy minimum.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 100.0 ¢ |
Major 1-mosstep | M1ms | L | 100.0 ¢ to 171.4 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 171.4 ¢ to 200.0 ¢ |
Major 2-mosstep | M2ms | 2L | 200.0 ¢ to 342.9 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 171.4 ¢ to 300.0 ¢ |
Major 3-mosstep | M3ms | 2L + s | 300.0 ¢ to 342.9 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 342.9 ¢ to 400.0 ¢ |
Major 4-mosstep | M4ms | 3L + s | 400.0 ¢ to 514.3 ¢ | |
5-mosstep | Diminished 5-mosstep | d5ms | 2L + 3s | 342.9 ¢ to 500.0 ¢ |
Perfect 5-mosstep | P5ms | 3L + 2s | 500.0 ¢ to 514.3 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 514.3 ¢ to 600.0 ¢ |
Major 6-mosstep | M6ms | 4L + 2s | 600.0 ¢ to 685.7 ¢ | |
7-mosstep | Perfect 7-mosstep | P7ms | 4L + 3s | 685.7 ¢ to 700.0 ¢ |
Augmented 7-mosstep | A7ms | 5L + 2s | 700.0 ¢ to 857.1 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 4L + 4s | 685.7 ¢ to 800.0 ¢ |
Major 8-mosstep | M8ms | 5L + 3s | 800.0 ¢ to 857.1 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 5L + 4s | 857.1 ¢ to 900.0 ¢ |
Major 9-mosstep | M9ms | 6L + 3s | 900.0 ¢ to 1028.6 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 5L + 5s | 857.1 ¢ to 1000.0 ¢ |
Major 10-mosstep | M10ms | 6L + 4s | 1000.0 ¢ to 1028.6 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 6L + 5s | 1028.6 ¢ to 1100.0 ¢ |
Major 11-mosstep | M11ms | 7L + 4s | 1100.0 ¢ to 1200.0 ¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 7L + 5s | 1200.0 ¢ |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||
11|0 | 1 | LLsLsLLsLsLs | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Aug. | Maj. | Maj. | Maj. | Maj. | Perf. |
10|1 | 6 | LLsLsLsLLsLs | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
9|2 | 11 | LsLLsLsLLsLs | Perf. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
8|3 | 4 | LsLLsLsLsLLs | Perf. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Maj. | Perf. |
7|4 | 9 | LsLsLLsLsLLs | Perf. | Maj. | Min. | Maj. | Min. | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Maj. | Perf. |
6|5 | 2 | LsLsLLsLsLsL | Perf. | Maj. | Min. | Maj. | Min. | Perf. | Maj. | Perf. | Maj. | Min. | Maj. | Min. | Perf. |
5|6 | 7 | LsLsLsLLsLsL | Perf. | Maj. | Min. | Maj. | Min. | Perf. | Min. | Perf. | Maj. | Min. | Maj. | Min. | Perf. |
4|7 | 12 | sLLsLsLLsLsL | Perf. | Min. | Min. | Maj. | Min. | Perf. | Min. | Perf. | Maj. | Min. | Maj. | Min. | Perf. |
3|8 | 5 | sLLsLsLsLLsL | Perf. | Min. | Min. | Maj. | Min. | Perf. | Min. | Perf. | Min. | Min. | Maj. | Min. | Perf. |
2|9 | 10 | sLsLLsLsLLsL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. | Min. | Min. | Maj. | Min. | Perf. |
1|10 | 3 | sLsLLsLsLsLL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
0|11 | 8 | sLsLsLLsLsLL | Perf. | Min. | Min. | Min. | Min. | Dim. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
Proposed Names
Both Eliora and Ganaram have independently proposed mode names based on names of the months. The former scheme uses mode names from the Gregorian calendar using cyclic order, starting with January assigned to the step pattern LsLsLsLLsLsL due to positioning of 31-day and 30-day months, with successive rotations assigned to successive months. The latter scheme is based on month names from the Roman calendar, starting with Mensis Martius as the brightest mode, with successive month names for each mode by descending brightness.
UDP | Cyclic order |
Step pattern |
---|---|---|
11|0 | 1 | LLsLsLLsLsLs |
10|1 | 6 | LLsLsLsLLsLs |
9|2 | 11 | LsLLsLsLLsLs |
8|3 | 4 | LsLLsLsLsLLs |
7|4 | 9 | LsLsLLsLsLLs |
6|5 | 2 | LsLsLLsLsLsL |
5|6 | 7 | LsLsLsLLsLsL |
4|7 | 12 | sLLsLsLLsLsL |
3|8 | 5 | sLLsLsLsLLsL |
2|9 | 10 | sLsLLsLsLLsL |
1|10 | 3 | sLsLLsLsLsLL |
0|11 | 8 | sLsLsLLsLsLL |
Scales
- Meaneb471a – an equal beating tuning of meantone
- Meantone12 – 31edo tuning
- Ratwolf – 20/13 wolf fifth tuning of meantone
- Meaneb471 – the other equal beating tuning of meantone
- Flattone12 – 13-limit POTE tuning of flattone