182edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Eliora (talk | contribs)
Complete, cleanup
Rework
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|182}}
{{EDO intro|182}}
== Theory ==
== Theory ==
182edo is inconsistent to the 5-limit and higher limit, with three mappings suitable for the 11-limit: {{val|182 288 423 511 630}} (patent val), {{val|182 289 423 511 630}} (182b), and {{val|182 288 422 511 629}} (182ce). It does have a potential as a 2.7.9.15.17.19 subgroup temperament.
182edo is in[[consistent]] to the [[5-odd-limit]] and higher limits, with three mappings suitable for the 11-limit: {{val| 182 288 423 511 630 }} ([[patent val]]), {{val| 182 289 423 511 630 }} (182b), and {{val| 182 288 422 511 629 }} (182ce). It does have a potential as a 2.9.15.7.17.19 [[subgroup]] temperament.


182edo (182bef val) is a tuning for the [[shrutar]] temperament in the 19-limit and [[petrtri]] in the 2.11/5.13/5 subgroup.
Using the patent val, it tempers out the mynic comma, 10077696/9765625 and {{monzo| -27 20 -2 }} in the 5-limit; [[126/125]], [[1728/1715]], and {{monzo| -28 18 1 -1 }} in the 7-limit; 2187/2156, 2835/2816, [[5632/5625]], and 14700/14641 in the 11-limit; [[364/363]], [[676/675]], [[1287/1280]], and 1701/1690 in the 13-limit. Using the 182f val, [[144/143]], [[847/845]], [[1001/1000]], and [[1716/1715]] are tempered out in the 13-limit.


=== Odd harmonics ===
Using the 182ce val, it tempers out the kleisma, [[15625/15552]] and the [[python comma]], 43046721/41943040 in the 5-limit; [[2430/2401]], 33075/32768, and 78125/76832 in the 7-limit; [[243/242]], [[385/384]], 2420/2401, and [[6250/6237]] in the 11-limit; [[351/350]], [[1188/1183]], 1287/1280, [[1575/1573]], and 1625/1617 in the 13-limit.  
{{harmonics in equal|182}}
== Regular temperament properties ==
=== Commas ===
Using the patent val, it tempers out the quinbigu comma, 10077696/9765625 and 3486784401/3355443200 in the 5-limit; 126/125, 1728/1715, and 1937102445/1879048192 in the 7-limit; 2187/2156, 2835/2816, 5632/5625, and 14700/14641 in the 11-limit; 364/363, 676/675, 1287/1280, and 1701/1690 in the 13-limit.  


Using the 182b val, it tempers out the [[Diaschismic family|diaschisma]], 2048/2025 and {{monzo|-4 -37 27}}; in the 5-limit; 245/243, 6144/6125, and 9882516/9765625 in the 7-limit; 3025/3024, 3773/3750, and 4000/3993 in the 11-limit.  
Using the 182b val, it tempers out the diaschisma, [[2048/2025]] and {{monzo| -4 -37 27 }}; in the 5-limit; [[245/243]], [[6144/6125]], and 9882516/9765625 in the 7-limit; [[3025/3024]], 3773/3750, and [[4000/3993]] in the 11-limit. Using the 182bf val, [[196/195]], [[325/324]], 364/363, and 1001/1000 are tempered out in the 13-limit. The 182bef val supports the [[shrutar]] temperament in the 19-limit and [[petrtri]] in the 2.11/5.13/5 subgroup.


Using the 182bf val, 196/195, 325/324, 364/363, and 1001/1000 are tempered out in the 13-limit. Using the 182ce val, it tempers out the [[Kleismic family|kleisma]], 15625/15552 and the lalagu comma, 43046721/41943040 in the 5-limit; 2430/2401, 33075/32768, and 78125/76832 in the 7-limit; 243/242, 385/384, 2420/2401, and 6250/6237 in the 11-limit; 351/350, 1188/1183, 1287/1280, 1575/1573, and 1625/1617 in the 13-limit.
=== Odd harmonics ===
 
{{Harmonics in equal|182}}
Using the 182f val, 144/143, 847/845, 1001/1000, and 1716/1715 are tempered out in the 13-limit.
 
[[Category:Equal divisions of the octave|###]] <!-- 3-digit number -->

Revision as of 09:09, 25 April 2024

← 181edo 182edo 183edo →
Prime factorization 2 × 7 × 13
Step size 6.59341 ¢ 
Fifth 106\182 (698.901 ¢) (→ 53\91)
Semitones (A1:m2) 14:16 (92.31 ¢ : 105.5 ¢)
Dual sharp fifth 107\182 (705.495 ¢)
Dual flat fifth 106\182 (698.901 ¢) (→ 53\91)
Dual major 2nd 31\182 (204.396 ¢)
Consistency limit 3
Distinct consistency limit 3

Template:EDO intro

Theory

182edo is inconsistent to the 5-odd-limit and higher limits, with three mappings suitable for the 11-limit: 182 288 423 511 630] (patent val), 182 289 423 511 630] (182b), and 182 288 422 511 629] (182ce). It does have a potential as a 2.9.15.7.17.19 subgroup temperament.

Using the patent val, it tempers out the mynic comma, 10077696/9765625 and [-27 20 -2 in the 5-limit; 126/125, 1728/1715, and [-28 18 1 -1 in the 7-limit; 2187/2156, 2835/2816, 5632/5625, and 14700/14641 in the 11-limit; 364/363, 676/675, 1287/1280, and 1701/1690 in the 13-limit. Using the 182f val, 144/143, 847/845, 1001/1000, and 1716/1715 are tempered out in the 13-limit.

Using the 182ce val, it tempers out the kleisma, 15625/15552 and the python comma, 43046721/41943040 in the 5-limit; 2430/2401, 33075/32768, and 78125/76832 in the 7-limit; 243/242, 385/384, 2420/2401, and 6250/6237 in the 11-limit; 351/350, 1188/1183, 1287/1280, 1575/1573, and 1625/1617 in the 13-limit.

Using the 182b val, it tempers out the diaschisma, 2048/2025 and [-4 -37 27; in the 5-limit; 245/243, 6144/6125, and 9882516/9765625 in the 7-limit; 3025/3024, 3773/3750, and 4000/3993 in the 11-limit. Using the 182bf val, 196/195, 325/324, 364/363, and 1001/1000 are tempered out in the 13-limit. The 182bef val supports the shrutar temperament in the 19-limit and petrtri in the 2.11/5.13/5 subgroup.

Odd harmonics

Approximation of odd harmonics in 182edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -3.05 +2.70 +0.40 +0.49 +2.53 -3.17 -0.36 +0.54 -0.81 -2.65 -1.90
Relative (%) -46.3 +40.9 +6.1 +7.4 +38.3 -48.0 -5.4 +8.2 -12.3 -40.2 -28.8
Steps
(reduced)
288
(106)
423
(59)
511
(147)
577
(31)
630
(84)
673
(127)
711
(165)
744
(16)
773
(45)
799
(71)
823
(95)