Turkish maqam music temperaments: Difference between revisions
Cmloegcmluin (talk | contribs) "optimal GPV sequence" → "optimal ET sequence", per Talk:Optimal_ET_sequence |
Cleanup; update keys |
||
Line 1: | Line 1: | ||
This is a collection of some proposed | This is a collection of some proposed [[temperament]]s for [[Arabic, Turkish, Persian music|Turkish maqam music]]. | ||
== Yarman I == | == Yarman I == | ||
[[Ozan Yarman]] has proposed defining the tuning of Turkish maqam music using a [[ | [[Ozan Yarman]] has proposed defining the tuning of Turkish maqam music using a [[mos]] of 79 or 80 notes out of 159. This means a generator of 2\159, which suggests the 19-limit mappings: | ||
* {{Mapping| 1 2 3 2 4 4 4 5 | 0 -33 -54 64 -43 -24 7 -60 }} | |||
* {{Mapping| 1 2 3 4 4 4 4 5 | 0 -33 -54 -95 -43 -24 7 -60 }} | |||
[ | The first mapping may be called 79 & 159 in terms of [[patent val]]s, and the second 80 & 159. In any event both mappings can be used inconsistently, and both temperaments are weak [[7-limit]] extensions of [[Orwellismic temperaments #Quartonic|quartonic]] temperament. A Pythagorean tuning, i.e. one with pure fifths, is also possible. | ||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 10976/10935, 244140625/243045684 | [[Comma list]]: 10976/10935, 244140625/243045684 | ||
{{Mapping|legend=1| 1 2 3 4 | 0 -33 -54 -95 }} | |||
{{Multival|legend=1| 33 54 95 9 58 69}} | {{Multival|legend=1| 33 54 95 9 58 69}} | ||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~126/125 = 15.0667 | ||
{{Optimal ET sequence|legend=1| 79d, 80, 159, 239 }} | {{Optimal ET sequence|legend=1| 79d, 80, 159, 239 }} | ||
Line 29: | Line 28: | ||
Comma list: 3025/3024, 4000/3993, 10976/10935 | Comma list: 3025/3024, 4000/3993, 10976/10935 | ||
Mapping: | Mapping: {{mapping| 1 2 3 4 4 | 0 -33 -54 -95 -43 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~121/120 = 15.0658 | ||
{{Optimal ET sequence|legend=1| 79d, 80, 159, 239 }} | {{Optimal ET sequence|legend=1| 79d, 80, 159, 239 }} | ||
Line 42: | Line 41: | ||
Comma list: 325/324, 364/363, 1001/1000, 10976/10935 | Comma list: 325/324, 364/363, 1001/1000, 10976/10935 | ||
Mapping: | Mapping: {{mapping| 1 2 3 4 4 4 | 0 -33 -54 -95 -43 -24 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~121/120 = 15.0752 | ||
{{Optimal ET sequence|legend=1| 79d, 80, 159, 239 }} | {{Optimal ET sequence|legend=1| 79d, 80, 159, 239 }} | ||
Line 55: | Line 54: | ||
Comma list: 325/324, 364/363, 595/594, 1001/1000, 10976/10935 | Comma list: 325/324, 364/363, 595/594, 1001/1000, 10976/10935 | ||
Mapping: | Mapping: {{mapping| 1 2 3 4 4 4 4 | 0 -33 -54 -95 -43 -24 7 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~120/119 = 15.0715 | ||
{{Optimal ET sequence|legend=1| 79d, 80, 159, 239 }} | {{Optimal ET sequence|legend=1| 79d, 80, 159, 239 }} | ||
Line 68: | Line 67: | ||
Comma list: 325/324, 361/360, 364/363, 595/594, 1001/1000, 1521/1520 | Comma list: 325/324, 361/360, 364/363, 595/594, 1001/1000, 1521/1520 | ||
Mapping: | Mapping: {{mapping| 1 2 3 4 4 4 4 5 | 0 -33 -54 -95 -43 -24 7 -60 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~120/119 = 15.0713 | ||
{{Optimal ET sequence|legend=1| 79dh, 80, 159, 239 }} | {{Optimal ET sequence|legend=1| 79dh, 80, 159, 239 }} | ||
Line 77: | Line 76: | ||
== Yarman II == | == Yarman II == | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 5359375/5308416, 390625000/387420489 | [[Comma list]]: 5359375/5308416, 390625000/387420489 | ||
{{Mapping|legend=1| 1 2 3 2 | 0 -33 -54 64 }} | |||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6144/6125 = 15.1062 | ||
{{Optimal ET sequence|legend=1| 79, 80d, 159 }} | {{Optimal ET sequence|legend=1| 79, 80d, 159 }} | ||
Line 94: | Line 93: | ||
Comma list: 385/384, 4000/3993, 78121827/77948684 | Comma list: 385/384, 4000/3993, 78121827/77948684 | ||
Mapping: | Mapping: {{mapping| 1 2 3 2 4 | 0 -33 -54 64 -43 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~121/120 = 15.1071 | ||
{{Optimal ET sequence|legend=1| 79, 80d, 159 }} | {{Optimal ET sequence|legend=1| 79, 80d, 159 }} | ||
Line 107: | Line 106: | ||
Comma list: 325/324, 385/384, 1575/1573, 85683/85184 | Comma list: 325/324, 385/384, 1575/1573, 85683/85184 | ||
Mapping: | Mapping: {{mapping| 1 2 3 2 4 4 | 0 -33 -54 64 -43 -24 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~105/104 = 15.1071 | ||
{{Optimal ET sequence|legend=1| 79, 80d, 159 }} | {{Optimal ET sequence|legend=1| 79, 80d, 159 }} | ||
Line 120: | Line 119: | ||
Comma list: 273/272, 325/324, 385/384, 1575/1573, 4928/4913 | Comma list: 273/272, 325/324, 385/384, 1575/1573, 4928/4913 | ||
Mapping: | Mapping: {{mapping| 1 2 3 2 4 4 4 | 0 -33 -54 64 -43 -24 7 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~105/104 = 15.1037 | ||
{{Optimal ET sequence|legend=1| 79, 80d, 159 }} | {{Optimal ET sequence|legend=1| 79, 80d, 159 }} | ||
Line 133: | Line 132: | ||
Comma list: 273/272, 325/324, 385/384, 665/663, 969/968, 1575/1573 | Comma list: 273/272, 325/324, 385/384, 665/663, 969/968, 1575/1573 | ||
Mapping: | Mapping: {{mapping| 1 2 3 2 4 4 4 5 | 0 -33 -54 64 -43 -24 7 -60 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~105/104 = 15.1013 | ||
{{Optimal ET sequence|legend=1| 79h, 159 }} | {{Optimal ET sequence|legend=1| 79h, 159 }} | ||
Line 144: | Line 143: | ||
{{See also| Schismatic family #Garibaldi }} | {{See also| Schismatic family #Garibaldi }} | ||
K. E. Karadeniz proposed a 41-note | K. E. Karadeniz proposed a 41-note mos with generator 31/106, giving a "hemigaribaldi" type of tuning, with an 11/9 neutral third generator. It is more plausible as an 11-limit system than 13-limit; the 13-limit wedgie is: | ||
{{Multival| 2 -16 -28 5 40 -30 -50 1 56 -20 67 152 111 216 120 }} | {{Multival| 2 -16 -28 5 40 -30 -50 1 56 -20 67 152 111 216 120 }} | ||
Line 152: | Line 151: | ||
{{Multival| 2 -16 -28 5 -30 -50 1 -20 67 111 }} | {{Multival| 2 -16 -28 5 -30 -50 1 -20 67 111 }} | ||
It tempers out | It tempers out [[225/224]], [[243/242]], [[3025/3024]], [[3125/3087]], [[4000/3969]], and [[5120/5103]], and can also be called 41 & 106. Aside from 31/106, 43/147 or 74/253 can be recommended as generators. | ||
=== 11-limit === | === 11-limit === | ||
Subgroup: 2.3.5.7.11 | [[Subgroup]]: 2.3.5.7.11 | ||
[[Comma list]]: 225/224, 243/242, 3125/3087 | [[Comma list]]: 225/224, 243/242, 3125/3087 | ||
{{Mapping|legend=1| 1 1 7 11 2 | 0 2 -16 -28 5 }} | |||
[[POTE | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~11/9 = 350.994 | ||
{{Optimal ET sequence|legend=1| 41, 106, 147 }} | {{Optimal ET sequence|legend=1| 41, 106, 147 }} | ||
Line 172: | Line 171: | ||
Comma list: 225/224, 243/242, 325/324, 640/637 | Comma list: 225/224, 243/242, 325/324, 640/637 | ||
Mapping: | Mapping: {{mapping| 1 1 7 11 2 -8 | 0 2 -16 -28 5 40 }} | ||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.014 | ||
{{Optimal ET sequence|legend=1| 41, 106, 147 }} | {{Optimal ET sequence|legend=1| 41, 106, 147 }} | ||
Line 182: | Line 181: | ||
[[Category:Temperament collections]] | [[Category:Temperament collections]] | ||
[[Category:Rank 2]] | [[Category:Rank 2]] | ||
[[Category:Turkish music]] |
Revision as of 06:52, 22 September 2023
This is a collection of some proposed temperaments for Turkish maqam music.
Yarman I
Ozan Yarman has proposed defining the tuning of Turkish maqam music using a mos of 79 or 80 notes out of 159. This means a generator of 2\159, which suggests the 19-limit mappings:
- [⟨1 2 3 2 4 4 4 5], ⟨0 -33 -54 64 -43 -24 7 -60]]
- [⟨1 2 3 4 4 4 4 5], ⟨0 -33 -54 -95 -43 -24 7 -60]]
The first mapping may be called 79 & 159 in terms of patent vals, and the second 80 & 159. In any event both mappings can be used inconsistently, and both temperaments are weak 7-limit extensions of quartonic temperament. A Pythagorean tuning, i.e. one with pure fifths, is also possible.
Subgroup: 2.3.5.7
Comma list: 10976/10935, 244140625/243045684
Mapping: [⟨1 2 3 4], ⟨0 -33 -54 -95]]
Wedgie: ⟨⟨ 33 54 95 9 58 69 ]]
Optimal tuning (POTE): ~2 = 1\1, ~126/125 = 15.0667
Optimal ET sequence: 79d, 80, 159, 239
Badness: 0.193315
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4000/3993, 10976/10935
Mapping: [⟨1 2 3 4 4], ⟨0 -33 -54 -95 -43]]
Optimal tuning (POTE): ~2 = 1\1, ~121/120 = 15.0658
Optimal ET sequence: 79d, 80, 159, 239
Badness: 0.049170
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 364/363, 1001/1000, 10976/10935
Mapping: [⟨1 2 3 4 4 4], ⟨0 -33 -54 -95 -43 -24]]
Optimal tuning (POTE): ~2 = 1\1, ~121/120 = 15.0752
Optimal ET sequence: 79d, 80, 159, 239
Badness: 0.040929
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 325/324, 364/363, 595/594, 1001/1000, 10976/10935
Mapping: [⟨1 2 3 4 4 4 4], ⟨0 -33 -54 -95 -43 -24 7]]
Optimal tuning (POTE): ~2 = 1\1, ~120/119 = 15.0715
Optimal ET sequence: 79d, 80, 159, 239
Badness: 0.031015
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 325/324, 361/360, 364/363, 595/594, 1001/1000, 1521/1520
Mapping: [⟨1 2 3 4 4 4 4 5], ⟨0 -33 -54 -95 -43 -24 7 -60]]
Optimal tuning (POTE): ~2 = 1\1, ~120/119 = 15.0713
Optimal ET sequence: 79dh, 80, 159, 239
Badness: 0.023193
Yarman II
Subgroup: 2.3.5.7
Comma list: 5359375/5308416, 390625000/387420489
Mapping: [⟨1 2 3 2], ⟨0 -33 -54 64]]
Optimal tuning (POTE): ~2 = 1\1, ~6144/6125 = 15.1062
Optimal ET sequence: 79, 80d, 159
Badness: 0.655487
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 4000/3993, 78121827/77948684
Mapping: [⟨1 2 3 2 4], ⟨0 -33 -54 64 -43]]
Optimal tuning (POTE): ~2 = 1\1, ~121/120 = 15.1071
Optimal ET sequence: 79, 80d, 159
Badness: 0.143477
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 385/384, 1575/1573, 85683/85184
Mapping: [⟨1 2 3 2 4 4], ⟨0 -33 -54 64 -43 -24]]
Optimal tuning (POTE): ~2 = 1\1, ~105/104 = 15.1071
Optimal ET sequence: 79, 80d, 159
Badness: 0.068150
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 273/272, 325/324, 385/384, 1575/1573, 4928/4913
Mapping: [⟨1 2 3 2 4 4 4], ⟨0 -33 -54 64 -43 -24 7]]
Optimal tuning (POTE): ~2 = 1\1, ~105/104 = 15.1037
Optimal ET sequence: 79, 80d, 159
Badness: 0.051019
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 273/272, 325/324, 385/384, 665/663, 969/968, 1575/1573
Mapping: [⟨1 2 3 2 4 4 4 5], ⟨0 -33 -54 64 -43 -24 7 -60]]
Optimal tuning (POTE): ~2 = 1\1, ~105/104 = 15.1013
Badness: 0.038430
Karadeniz
K. E. Karadeniz proposed a 41-note mos with generator 31/106, giving a "hemigaribaldi" type of tuning, with an 11/9 neutral third generator. It is more plausible as an 11-limit system than 13-limit; the 13-limit wedgie is:
⟨⟨ 2 -16 -28 5 40 -30 -50 1 56 -20 67 152 111 216 120 ]]
which in the 11-limit becomes:
⟨⟨ 2 -16 -28 5 -30 -50 1 -20 67 111 ]]
It tempers out 225/224, 243/242, 3025/3024, 3125/3087, 4000/3969, and 5120/5103, and can also be called 41 & 106. Aside from 31/106, 43/147 or 74/253 can be recommended as generators.
11-limit
Subgroup: 2.3.5.7.11
Comma list: 225/224, 243/242, 3125/3087
Mapping: [⟨1 1 7 11 2], ⟨0 2 -16 -28 5]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 350.994
Optimal ET sequence: 41, 106, 147
Badness: 0.041562
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 243/242, 325/324, 640/637
Mapping: [⟨1 1 7 11 2 -8], ⟨0 2 -16 -28 5 40]]
Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.014
Optimal ET sequence: 41, 106, 147
Badness: 0.042564