289edo: Difference between revisions
m Style |
→Regular temperament properties: +RTT table |
||
Line 18: | Line 18: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
289edo has decent 11 and 13-limit interpretations despite not being consistent. | 289edo has decent 11 and 13-limit interpretations despite not being consistent. | ||
{| class="wikitable center-4 center-5 center-6" | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list|Comma List]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve Stretch (¢) | |||
! colspan="2" | Tuning Error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3 | |||
| {{monzo| -458 289 }} | |||
| [{{val| 289 458 }}] | |||
| +0.0709 | |||
| 0.0710 | |||
| 1.71 | |||
|- | |||
| 2.3.5 | |||
| 32805/32768, {{monzo| 7 41 -31 }} | |||
| [{{val| 289 458 671 }}] | |||
| +0.0695 | |||
| 0.0580 | |||
| 1.40 | |||
|- | |||
| 2.3.5.7 | |||
| 4375/4374, 32805/32768, 235298/234375 | |||
| [{{val| 289 458 671 811 }}] | |||
| +0.1725 | |||
| 0.1854 | |||
| 4.46 | |||
|} | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === |
Revision as of 04:23, 2 October 2022
← 288edo | 289edo | 290edo → |
Theory
289edo is the optimal patent val for 13-limit history temperament, which tempers out 364/363, 441/440 and 676/675, and provides a good tuning for the 11-limit version also, and is also the optimal patent val for sextilififths in both the 11- and 13-limit. It is uniquely consistent in the 9-odd-limit, and tempers out the schisma, 32805/32768 in the 5-limit; 4375/4374 and 65625/65536 in the 7-limit; 441/440 and 4000/3993 in the 11-limit; and 364/363, 676/675, 1001/1000, 1575/1573 and 2080/2079 in the 13-limit.
289 is 17 squared. In light of containing 17edo as a subset, 289edo supports the chlorine temperament, which tempers out the septendecima [-52 -17 34⟩ and the ragisma 4375/4374.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.22 | -0.15 | -1.35 | +0.93 | -1.77 | -1.15 | +1.45 | -1.28 | +0.18 | +0.99 |
Relative (%) | +0.0 | -5.4 | -3.7 | -32.6 | +22.4 | -42.7 | -27.7 | +34.9 | -30.9 | +4.3 | +23.7 | |
Steps (reduced) |
289 (0) |
458 (169) |
671 (93) |
811 (233) |
1000 (133) |
1069 (202) |
1181 (25) |
1228 (72) |
1307 (151) |
1404 (248) |
1432 (276) |
Regular temperament properties
289edo has decent 11 and 13-limit interpretations despite not being consistent.
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-458 289⟩ | [⟨289 458]] | +0.0709 | 0.0710 | 1.71 |
2.3.5 | 32805/32768, [7 41 -31⟩ | [⟨289 458 671]] | +0.0695 | 0.0580 | 1.40 |
2.3.5.7 | 4375/4374, 32805/32768, 235298/234375 | [⟨289 458 671 811]] | +0.1725 | 0.1854 | 4.46 |
Rank-2 temperaments
Periods per Octave |
Generator (Reduced) |
Cents (Reduced) |
Associated Ratio |
Temperaments |
---|---|---|---|---|
1 | 20\289 | 83.045 | 21/20 | Sextilififths |
17 | 93\289 (8\289) |
386.159 (33.218) |
[-23 5 9 -2⟩ (100352/98415) |
Chlorine |